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Abstract. Given a group G and a number field K, the Grunwald problem
asks whether given field extensions of completions of K at finitely many places
can be approximated by a single field extension of K with Galois group G. This
can be viewed as the case of constant groups G in the more general problem of
determining for which K-groups G the variety SLn/G has weak approximation.
We show that away from an explicit set of bad places both problems have an
affirmative answer for iterated semidirect products with abelian kernel. Further-
more, we give counterexamples to both assertions at bad places. These turn out
to be the first examples of transcendental Brauer-Manin obstructions to weak
approximation for homogeneous spaces.
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1. Introduction

The Grunwald-Wang theorem has fundamental applications to the structure
theory of finite dimensional semisimple algebras, cf. [Pie82, Ch. 18] and provides
an answer for abelian groups G to the more general Grunwald problem. The
latter is an inverse Galois problem of increasing interest due to its recently studied
connections with the regular inverse Galois problem and with weak approximation,
cf. [DG12, Har07].

Fix a number field K, let Kv denote the completion of K at a place v, and
Gal(K) denote its absolute Galois group. Let G be a finite group, and S a finite
set of places of K. The Grunwald problem then asks whether every prescribed
local Galois extensions L(v)/Kv, v ∈ S, with embeddings Gal(L(v)/Kv) ↪→ G can
be approximated by a global extension L/K with Galois group G. More precisely:

Grunwald Problem. Is the restriction map

Hom(Gal(K), G)→
∏
v∈S

Hom(Gal(Kv), G)/ ∼

surjective?
Here φ1 ∼ φ2 if φ1 = gφg−1 for some g ∈ G. Note that the quotient by ∼ is

necessary since the decomposition group of L/K is defined up to conjugation.

Families of groups G and number fields K for which (G,K, S) has an affirmative
answer to the Grunwald problem for every S include: (1) abelian groups of odd
order over every number field, by the Grunwald–Wang theorem [Gru33, Wan50];
(2) solvable groups of order prime to the number of roots of unity in K, by
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Neukirch’s theorem [Neu79]; and (3) groups with a generic extension over K,
by Saltman’s theorem [Sal82].

Recent results by Dèbes-Ghazi on the inverse Galois problem (cf. [DG12]) and
by Harari on weak approximation for homogeneous spaces (cf. [Har07]) suggest
that for every finite group G there exists a finite set T := T (G,K) of “bad places”
of K such that the Grunwald problem has an affirmative answer for (G,K, S) for
every set S that is disjoint from T . In fact, the existence of such a set T is implied
by a conjecture of Colliot-Thélène on the Brauer-Manin obstruction for rationally
connected varieties. The connection is done by considering the following more
general version of the Grunwald problem for finite K-groups G.

Approximation property. A K-group G has (weak) approximation in a set S
of places of K if the natural restriction map

H1(K,G)→
∏
v∈S

H1(Kv, G),

is surjective. We shall say G has approximation away from T , if G has approxi-
mation in S for every finite set S of places of K that is disjoint from T .

The approximation property for every finite S ⊂ ΩK is equivalent to weak
approximation for certain homogeneous spaces (hence its name), see Section 2.5.
Moreover, for constant groups G, it is equivalent to a positive answer to the
Grunwald problem for (G,K, S), see Section 2.3.

The existence of a finite set T of “bad places” away from which the approximation
property holds is expected to hold for arbitrary finite K-groups, and is strongly
related with arithmetic properties of homogeneous spaces. Moreover, the existence
of such a set T for K-groups has been proved over arbitrary number fields K for:
(1) abelian K-groups G, by Wang (cf. [Wan50]); (2) iterated semidirect products
G = A1 o (A2 o · · · o Ar) of abelian K-groups, by Harari (cf. [Har07]); and
(3) solvable K-groups G of order prime to the number of roots of unity in an
extension of K splitting G, by the second author (here T = ∅, cf. [Luc14a]).

Ever since Wang’s work on the subject, triples (G,K, S) having a negative an-
swer to the Grunwald problem (and thus not having the approximation property)
are known to exist. However, it is unclear what the set T = T (G,K) should be.
In fact, there is no explicit description of a set T even for basic groups such as
semidirect products of two abelian p-groups.

This paper gives both affirmative and negative answers to the Grunwald problem
and the approximation property, suggesting that the set T = T (G,K) can always
be taken to be the union of the places of K which divide the order of G and those
which ramify in the minimal extension splitting G.

1.1. Main results. We give a precise description of the set T of “bad places”
for iterated semidirect products of abelian groups, complementing Harari’s result
[Har07, Thm. 1].

Theorem 1.1. Let K be a number field and G be a finite K-group which is an
iterated semidirect product G = A1o(A2o · · ·oAr) of abelian K-groups. Let L/K
be an extension splitting G, and T the set of places that either divide the order of
G, or ramify in L. Then G has approximation away from T .
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If G is constant, L = K and hence the only condition on places v ∈ S is to be
prime to the order of G. The Grunwald problem has then an affirmative answer
for such (G,K, S). The family of iterated semidirect products of abelian groups
contains the dihedral groups, the Heisenberg groups of order p3, and the p-Sylow
subgroups of the symmetric groups (cf. [Wei55]), of GLn(Fq), and of other classi-
cal groups over Fq when q is prime to p (cf. [Kal48]).

In an opposite scenario, when G is a constant group and S consists of the
primes of K dividing the order of G, we give the following examples in which
the approximation property doesn’t hold. In contrast to Wang’s counterexamples,
here the set S consists of the primes of K dividing any given rational prime p,
answering a question of Dèbes-Ghazi, cf. [DG12, Section 1.6].

Recall that a bicyclic group is either cyclic or a direct product of two cyclic
groups.

Theorem 1.2. Let K be a number field and G a finite abelian p-group that is not
bicyclic. Assume that G is a Galois group over some completion of K (which a
fortiori divides p) and let S be the finite set of places of K lying above p. Then
there exists an abelian G-module A (of order a power of p) such that if we consider
E := AoG as a constant K-group and K contains sufficiently many roots of unity,
the map

H1(K,E)→
∏
v∈S

H1(Kv, E),

is not surjective.

Examples of p-groups over K = Q(µp) that do not admit the approximation
property at the places dividing p were given for any prime number p by the first
author in [Dem10, §6, Prop. 2], where an algebraic Brauer-Manin obstruction
to the approximation property is given. However, in contrast with [Har07, §5],
[Dem10] and [Luc14b, §5.2], which study algebraic Brauer-Manin obstructions,
Theorem 1.2 provides examples in which the approximation property doesn’t hold
and the algebraic Brauer-Manin obstruction vanishes, giving the first examples of a
transcendental Brauer-Manin obstruction to weak approximation on homogeneous
spaces, see Example 5.3.

1.2. Tame problems. The above results suggest that the answer to the Grunwald
problem is affirmative away from a particular set of bad primes:

Tame approximation problem. Does the approximation property hold for
every finite K-group G and every finite set S of places of K that are prime to its
order and are unramified in an extension splitting G?

Here we do not consider the extension C/R to be ramified, hence the question
about real approximation (i.e. having the approximation property for the set S of
archimedean places), asked years ago by Borovoi, is included in this last one.

Negative answers to these questions are unknown, and a complete affirmative
answer is currently out of reach, as it implies a solution to the inverse Galois
problem (see [Har07, §4]). In view of Theorem 1.1 and its proof, it seems reasonable
to conjecture that the answer is affirmative for all solvable groups.
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2. Preliminaries

2.1. Global and local Galois groups. All throughout this text, K denotes a
number field, ΩK is the set of places of K and, for v ∈ ΩK , Kv denotes the com-
pletion of K in v. For any Galois extension L/K we denote by Gal(L/K) the
corresponding Galois group, and by Gal(K) the absolute Galois group. Through-
out the text, we fix an embedding of Gal(Kv) in Gal(K) and identify it with its
image for each v ∈ ΩK .

For a finite place v ∈ ΩK , let Ktr
v be the maximal tamely ramified extension

of Kv, let Γv := Gal(Ktr
v /Kv) be the tame Galois group and Wv := Gal(Ktr

v ) the
wild ramification group. Recall that the tame inertia group Tv := Gal(Ktr

v /K
un
v )

is a procyclic normal subgroup of Γv of order prime to v; Let τv be a generator
of Tv. The quotient Γv/Tv ∼= Gal(Kun

v /Kv) ∼= Ẑ is generated by a lift σv of the
Frobenius automorphism.

We let σv ∈ Γv be a preimage σv. Note that σv is defined up to conjugation and
that its action by conjugation on Tv is equivalent to its action on roots of unity,
that is, σvτvσ−1

v = τ qvv where qv is the cardinality of the residue field of Kv, see
[NSW08, §7.5].

For archimedean v, let σv be the generator of Gal(Kv) and put τv = 1, so that
Γv := Gal(Kv) and Tv = 〈τv〉 = {1}.

2.2. K-groups. A finite K-group G is a finite group scheme over K. Since K
is of characteristic 0, there is an equivalence of categories between finite group
schemes over K and finite Gal(K)-groups. Identifying the two, we shall write G
for the set of its geometric points. An extension L/K is said to split G if G×KL is
a constant L-group, i.e. if the Galois group Gal(L) ⊂ Gal(K) acts trivially on G.
We also need the following notion of “bad places” for such G:

Definition 2.1. Let K be a number field, G be a finite K-group and L/K the
minimal extension splitting G. We define the set of “bad places” BadG ⊂ ΩK

as the union of the set of places dividing the order of G and the places ramified
in L/K.

Note that the minimal extension splitting G always exists. Indeed, the action
of Gal(K) on G is a (continuous) morphism Gal(K) → Aut(G) and the minimal
extension splitting G is given by the kernel of this extension.

2.3. Cohomology. Recall [Ser02, I, §5] that for a field K and a K-group G, the
set H1(K,G) is defined as the quotient of the set of 1-cocycles (also called crossed
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homomorphisms)

Z1(K,G) := {a : Gal(K)→ G continuous | aστ = aσ aσ τ , ∀σ, τ ∈ Gal(K)},
by the equivalence

a ∼ b ⇔ ∃ g ∈ G such that aσ = gbσ gσ −1, ∀σ ∈ Gal(K).

Hence for a constant K-group G, the set H1(K,G) is the set of continuous group
homomorphisms Gal(K)→ G modulo conjugation in G. In particular, the Grun-
wald problem for (G,K, S) is equivalent to the approximation property for G
constant. If L/K is an extension splitting G, then Gal(L/K) acts on G and one
may similarly define the set H1(L/K,G), which clearly embeds into H1(K,G) by
inflation.

A class α ∈ H1(K,G) is denoted by [a] if it corresponds to the class of the
cocycle a. For α ∈ H1(K,G), we denote by αv its image under the restriction map
Resv : H1(K,G)→ H1(Kv, G).

2.4. Twisting. We recall briefly the basic properties of twisting. For further
details see [Ser02, §I.5]. Let Γ be a profinite group and G be a discrete Γ-group.
Assume that G and Γ act both on the left on some object X in a compatible way,
that is, (σ g · x) = gσ · xσ for σ ∈ Γ, g ∈ G, x ∈ X. Given a cocycle a ∈ Z1(Γ, G),
define a new action of Γ on X by twisting the first action as follows:

xσ∗ := aσ · xσ .

Such a twisted object, denoted by Xa , still has an action of G. However, the latter
is not necessarily compatible with the action of Γ. To fix this, one twists also the
action of Γ on G. To do so it suffices to view G as acting on itself by conjugation,
and repeat the same construction, so that

gσ∗ := aσ gσ a−1
σ .

This twist of G, denoted by Ga , is a Γ-group which acts on Xa compatibly with
the Γ-action.

This construction takes principal homogeneous spaces under G to principal ho-
mogeneous spaces under Ga . More precisely, one has [Ser02, I.5.3, Prop. 35bis]:

Proposition 2.2. Let a ∈ Z1(Γ, G) and let G′ = Ga . The map

ta : Z1(Γ, G′)→ Z1(Γ, G) : a′ 7→ (σ 7→ a′σaσ),

is a bijection which moreover induces a bijection

τa : H1(Γ, G′)→ H1(Γ, G),

sending the trivial element of H1(Γ, G′) to the class of a in H1(Γ, G).

An exact sequence of Γ-groups such as 1 → H → E → G → 1 gives rise to an
exact sequence of pointed sets (cf. [Ser02, I.5.5, Prop. 38]):

(1) H1(Γ, H)→ H1(Γ, E)→ H1(Γ, G),

which means that the elements in H1(Γ, E) falling onto the trivial element of
H1(Γ, G) are precisely those coming from H1(Γ, H).

Let e ∈ Z1(Γ, E) and let g be its image in Z1(Γ, G). To study the fiber of the
class [e] ∈ H1(Γ, E), that is, the fiber above [g] ∈ H1(Γ, G), one uses twisting.
Since E acts on E, on G and on H by conjugation, one may twist all three groups



6 CYRIL DEMARCHE, GIANCARLO LUCCHINI ARTECHE, DANNY NEFTIN

by e, getting an exact sequence 1 → He → Ee → Ge → 1 and the following
commutative diagram of pointed sets with exact sequences:

H1(Γ, H) // H1(Γ, E) //

τ−1
e

��

H1(Γ, G)

τ−1
g

��
H1(Γ, He ) // H1(Γ, Ee ) // H1(Γ, Gg ).

Note that the twisted form of G is denoted by Gg instead of Ge , since E acts on G
via its own image in G. Since the lower row is exact and since the τ ’s are bijections
sending [g] and [e] to the trivial elements, we now know that the fiber over [g] is
in bijection with the image of the set H1(Γ, He ) in H1(Γ, Ee ). Note also that in
general there is no vertical arrow at the level of H (as Proposition 2.2 applies only
to twists by a group acting on itself by conjugation).

Two elements H1(Γ, H) are mapped under (1) to the same element of H1(Γ, E)
if and only if they lie in the same orbit of Coker(H0(Γ, E) → H0(Γ, G)), [Ser02,
I.5.5, Prop. 39]. Here an element g ∈ H0(Γ, G) = GΓ acts on H1(Γ, H) by sending
a class α ∈ H1(Γ, H) to

(2) (g · α)σ = eασ e−1σ

where e ∈ E is a preimage of g.

2.5. Homogeneous spaces. Let us now recall the notion of weak approximation
for K-varieties. Let X then be a (smooth, geometrically integral) K-variety such
that X(K) 6= ∅.

Definition 2.3. Let S ⊂ ΩK be a finite set of places of K. We say that X has
approximation in S if X(K) is dense in the product

∏
S X(Kv).

We say that X has weak approximation away from T ⊂ ΩK if X has approxi-
mation in S for all finite S ⊂ ΩK r T . Equivalently, one can demand X(K) to be
dense in the product

∏
ΩKrT X(Kv). The set T is usually refered to as the set of

“bad places”.
We say that X has weak approximation if one can take T = ∅.

Let us briefly recall the Brauer-Manin obstruction to weak approximation (cf.
[Sko01, §5.1] for details). For X a (smooth, geometrically integral) K-variety,
consider its unramified Brauer group BrunX, as well as the subgroup of its “alge-
braic” elements Brun,alX := ker[BrunX → Brun(X ×K K̄)]. Denote, for v ∈ ΩK ,
invv : BrKv → Q/Z the Hasse invariant map. Finally, denote by X(KΩ) the
product

∏
ΩK

X(Kv) in which X(K) embeds diagonally. Then one can define
the set X(KΩ)Brun (resp. X(KΩ)Brun,al) as the subset of all families of points
(Pv)v∈ΩK

∈ X(KΩ) such that∑
v∈ΩK

invv(α(Pv)) = 0, for all α ∈ BrunX (resp. α ∈ Brun,alX),

where α(Pv) ∈ BrKv denotes the evaluation of α at the point Pv and the sum,
which a priori is infinite, is actually finite for elements α ∈ BrunX. The following
inclusions then hold:

X(K) ⊆ X(KΩ)Brun ⊆ X(KΩ)Brun,al ⊆ X(KΩ).
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If X(KΩ)Brun 6= X(KΩ) (resp. X(KΩ)Brun,al 6= X(KΩ)) one says that there is a
Brauer-Manin obstruction (resp. an algebraic Brauer-Manin obstruction) to weak
approximation. A Brauer-Manin obstruction that is not algebraic is called tran-
scendental.

A conjecture by Colliot-Thélène (cf [Col03], Introduction) says that the Brauer-
Manin obstruction to weak approximation should be the only obstruction for ratio-
nally connected varieties, that is,X(K) = X(KΩ)Brun . Now, given a finiteK-group
G, one can always embed it into SLn for some n and consider the homogeneous
space X = SLn/G, which is unirational (since SLn is itself a rational variety) and
hence rationally connected. In [Har07, Thm. 1], Harari proved that if G is an iter-
ated semidirect product of abelian groups, then we do have X(K) = X(KΩ)Brun .
The fact that this theorem implies the approximation property away from a finite
set T of places as we claimed in §1 follows from the finiteness of BrunX and from
the following result [Har07, §1.2] or [Luc14a, §1]:

Proposition 2.4. Let G a be K-group embedded into SLn and put X := SLn/G.
Let S ⊂ ΩK be a finite set of places of K. Then X has approximation in S if and
only if the natural map

H1(K,G)→
∏
v∈S

H1(Kv, G),

is surjective.

Note that this result proves in particular that approximation properties for
varieties such as X = SLn/G depend only on G, i.e. they are independent of the
embedding of G and even on the dimension of X since there is no condition on n,
justifying the definition of the approximation property in §1.

The tame approximation problem is thus equivalent to determining whether G
(or X = SLn/G) has weak approximation away from T = BadG. Note that a
positive answer to this question does not necessarily imply a positive answer to
Colliot-Thélène’s conjecture for X = SLn/G. Conversely, if the conjecture were
true, we would only get the existence of a finite set TBr of bad places. However,
not enough is known on the unramified Brauer group of X in order to show that
TBr = BadG.

2.6. Poitou-Tate. We next recall the obstruction to weak approximation for fi-
nite abelianK-groups. Let A be a finite abelianK-group and let Â = Hom(A,Gm)
be its Cartier dual, which is also a finite abelian K-group.

Let Kun
v denote the maximal unramified extension and Ktr

v its maximal tamely
ramified extension. Recall [Ser02, II, §6] that for every finite place v such that
Gal(Kun

v ) acts trivially on A, the unramified cohomology H1
un(Kv, A) is defined

as the image of the group H1(Kun
v /Kv, A) under inflation to H1(Kv, A). One

can consider then the restricted product
∏∐

ΩK
H1(Kv, A) with respect to these

subgroups. It is well known that the product of the restriction maps Resv sends
H1(K,A) into

∏∐
ΩK

H1(Kv, A). A classical result by Poitou and Tate (cf. [Ser02,
II.6.3]) gives a perfect pairing

(3)
∏∐
ΩK

H1(Kv, A)×
∏∐
ΩK

H1(Kv, Â)→ Q/Z,
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defined via local pairings and such that the image of H1(K,A) is the orthogonal
complement of the image of H1(K, Â) for this pairing. A classic consequence of
these is the following well-known proposition (cf. [NSW08, Lem. 9.2.2]).

For a subset S of ΩK , let X1
S(K,G) := {α ∈ H1(K,G) |αv = 1, ∀ v 6∈ S}, and

let X1(K,G) := X1
∅(K,G).

Proposition 2.5. Let A be a finite abelian K-group and S ⊂ ΩK be a finite set
of places. Then there is a pairing∏

v∈S

H1(Kv, A)×X1
S(K, Â)→ Q/Z,

such that its right kernel is X1(K, Â) and its left kernel is the image of the re-
striction map

H1(K,A)→
∏
v∈S

H1(Kv, A)

In particular, A has approximation in S if and only if X1
S(K, Â) = X1(K, Â).

We shall use the following property of X1
S(K, ·) to descend to finite extensions:

Lemma 2.6. Let A be a finite abelian K-group. Let L/K be a Galois extension
splitting A. Then for any finite S ⊂ ΩK, X1

S(K,A) is contained in the image of
H1(L/K,A) by the inflation map.

Proof. Since Gal(L) acts trivially on A, we have the following commutative dia-
gram with exact rows:

1 // H1(L/K,A)
Inf // H1(K,A)

��

Res // H1(L,A)

��∏
v∈ΩK

H1(Kv, A)
Res //

∏
w∈ΩL

H1(Lw, A).

Since L splits A, the H1’s on the right hand side of the diagram are actually
groups of homomorphisms. Restricting a class α ∈ X1

S(K,A) to H1(L,A), we
get a homomorphism Gal(L)→ A that is trivial everywhere locally except for the
finitely many w ∈ ΩL that lie above S ⊂ ΩK . By Chebotarev’s density theorem
it is the trivial morphism. Thus by exactness, α comes from H1(L/K,A). ¨̂

3. Reocurrence

The main idea in proving Theorem 1.1 is to show that, given n ∈ N and a set
of places S prime to n, for every place v 6∈ S, there are always infinitely many
other places w admitting the following similarities with v: every finite K-group G
of order n appears as a Galois group over Kv if and only if it appears over Kw,
and H1(Kv, G) ∼= H1(Kw, G).

Let us start by proving that, for finite places not in BadG, the H1 set depends
only on the tamely ramified part Γv = Gal(Ktr

v /Kv). Recall that Γv is generated
by a lift σv of the Frobenius and a generator of the inertia group τv, as in §2.1.
For every place v, we fix a choice of σv and τv and keep it all throughout the text.
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Lemma 3.1. Let G be a finite K-group of order n and let v ∈ ΩK be a place
outside BadG. Denote by T nv the subgroup of Γv generated by τnv . Then there is an
isomorphism H1(Kv, G) ∼= H1(Γv/T

n
v , G) given by inflation.

Proof. The statement is trivial for archimedean v, so we may assume that v is
finite. Since the wild ramification subgroup Wv ≤ Gal(Kv) acts trivially on G,
the inflation-restriction sequence gives:

1→ H1(Γv, G)
Inf−→ H1(Kv, G)

Res−−→ H1(Wv, G),

and H1(Wv, G) is the set of morphisms Wv → G up to conjugation. Since Wv is
a pro-p group for p not dividing n, there are no such nontrivial morphisms and
hence H1(Kv, G) ∼= H1(Γv, G).

Consider now a class α ∈ H1(Γv, G). Since v is unramified in the minimal ex-
tension splitting G, Tv also acts trivially on G and hence α restricts to a morphism
(up to conjugation) from Tv to G. It is then evident that this morphism is trivial
over T nv . The same inflation-restriction argument then gives

H1(Kv, G) ∼= H1(Γv/T
n
v , G).

¨̂

The following reocurrence result generalizes the statement given in the beginning
of the section.

Proposition 3.2. Let G be a finite K-group of order n, L/K an extension split-
ting G and let v ∈ ΩK be either an archimedean place or a finite place which is
unramified in L and does not divide n (in particular, v 6∈ BadG). Then there exist
infinitely many finite places w 6∈ BadG for which:

(1) the decomposition groups of v and w in Gal(L/K) are conjugate;
(2) there is an epimorphism φ : Γw/T

n
w � Γv/T

n
v given by φ(σw) = σv, φ(τw) = τv,

which is moreover an isomorphism if v is finite.
The epimorphism φ induces a monomorphism φ∗ : H1(Kv, G) ↪→ H1(Kw, G), which
is moreover an isomorphism if v is finite.

Proof. By Chebotarev’s density theorem applied to the Galois extension L(µn)/K
(which is unramified in v) there are infinitely many places w 6∈ BadG for which
the image of the decomposition group in Gal(L(µn)/K) is generated by the image
of σw and is conjugate to the image of σv. In particular, we get that these groups
are conjugate in Gal(L/K).

If v is finite, the images of σv and σw coincide in the quotient Gal(K(µn)/K) and
hence their residue degrees qv, qw, respectively, are congruent mod n. Moreover,
recall that as a profinite group Γv/T

n
v has the following presentation:

〈σv, τv |σvτvσ−1
v = τ qvv , τ

n
v = 1〉.

Since qw ≡ qv mod n, we get an isomorphism φ : Γw/T
n
w → Γv/T

n
v by setting

φ(σw) = σv and φ(τw) = τv. If v is archimedean, the same definition gives an
epimorphism φ : Γw/T

n
w → Gal(Kv) since σ2

v = τv = 1.

Let ρ ∈ Gal(K) be an element for which σw coincides with ρσvρ−1 in Gal(L/K).
Denote by Gρ the Kv-group where σ ∈ Gal(Kv) acts on G by g 7→ gρσρ−1 and note
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that this action coincides with that of Gal(Kw) on G. Consider the maps

H1(Γv/T
n
v , G)

ρ∗−→ H1(Γv/T
n
v , Gρ )

φ∗−→ H1(Γw/T
n
w , G),

where ρ∗ is a canonical isomorphism defined at the level of cocycles by the identity
on Γv/T

n
v and by sending g ∈ G to gρ . We abusively denote by φ∗ the whole

composition. Then evidently φ∗ is an isomorphism if v is finite and injective as an
inflation morphism if v is archimedean. Recall finally that by Lemma 3.1, we have
H1(Kv, G) ∼= H1(Γv/T

n
v , G) for finite v and Γv/T

n
v = Gal(Kv) for archimedean v,

hence the result. ¨̂

We finally give a particular application necessary for the proof of Theorem 1.1:

Lemma 3.3. Let G, L/K, v, w, φ and φ∗ be as given by Proposition 3.2. Let
α ∈ H1(Kv, G) and assume that there exists a class β = [b] ∈ H1(K,G) such that
βv = α, βw = φ∗α and such that the group morphism Gal(L) → G obtained by
restriction of b to Gal(L) is surjective. Denote by L′ the extension defined by the
kernel of this morphism. Then the decomposition groups of v and w in Gal(L′/K)
are conjugate.

We first note that L′/K is indeed Galois:

Lemma 3.4. Let G be a K-group and L/K be a Galois extension splitting G. Let
b ∈ Z1(K,G) and L′/L be the field fixed by the kernel of the restriction of b to
Gal(L). Then L′ is Galois over K.

Proof. Let τ ∈ Gal(L′) and σ ∈ Gal(K). Then

bστσ−1 = bσ bσ τ bστσ−1 −1
σ .

Now, since L/K is Galois and τ ∈ Gal(L′) ⊆ Gal(L), we get στσ−1 ∈ Gal(L),
hence it acts trivially on bσ. As bτ = 1 by definition of L′, we get bστσ−1 = 1,
which proves that στσ−1 ∈ Gal(L′) and thus L′/K is Galois. ¨̂

Proof of Lemma 3.3. We first show that the decomposition groups of v and w in
Gal(L′/K) are quotients of Γv/T

n
v and Γw/T

n
w . Indeed, this holds for archimedean

v since Gal(Kv) = Γv/T
n
v . For finite v and w, L′/K is tamely ramified since L/K

is unramified and L′/L is of degree n and hence prime to v and w. Since the
restriction of b to Tv and Tw is a morphism, it must be trivial on T nv and T nw , i.e.
T nv , T

n
w ⊂ Gal(L′), proving the claim.

Denote then (abusively) by σv, σw, τv, τw, the images in Gal(L′/K) of these ele-
ments. Recall that by Proposition 3.2, there exists an element ρ ∈ Gal(K) such
that σw coincides with ρσvρ−1 in Gal(L/K). Also note that ρτvρ−1 = τw = 1 in
Gal(L/K). We claim that we may choose ρ so that bρ = 1. Note that bχρ = bχbρ
for χ ∈ Gal(L). Since b is surjective when restricted to Gal(L), there exists
χ ∈ Gal(L) such that bχ = b−1

ρ so that bχρ = 1. Since χ ∈ Gal(L), we have that
σw coincides with (χρ)σv(χρ)−1 in Gal(L/K), proving the claim.

The isomorphism φ∗ between H1(Kv, G) and H1(Kw, G) is given at the level
of cocycles by the morphisms ρ∗ : G → G and φ : Γw/T

n
w → Γv/T

n
v , which

satisfy ρ∗(g) = gρ , φ(σw) = σv, and φ(τw) = τv. In particular, if α = [a] for
a ∈ Z1(Γv/T

n
v , G), then φ∗α = [a′] with a′σw = aρ σv and a′τw = aρ τv .
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Now, since βv = α and βw = φ∗α, we know that there exist g, g′ ∈ G such that

(ρ gbσv gσv −1) = aρ σv = a′σw = g′bσw g′σw −1,

(ρ gbτvg
−1) = aρ τv = a′τw = g′bτwg

′−1
.

Since b restricted to Gal(L′/L) is an isomorphism by hypothesis, there are unique
χ, χ′ ∈ Gal(L′/L) such that bχ = g, bχ′ = g′, so that

bρ χ b
ρ
σv bρσv −1

χ = bχ′bσw bσw −1
χ′ ,

bρ χ b
ρ
τv b
ρ −1
χ = bχ′bτwb

−1
χ′ .

(4)

Note now that since bρ = 1, we have bρηρ−1 = bρ η for every η ∈ Gal(L′/L), so in
particular for η = χ, τv, and χ−1. Noting that ρGal(L′/L)ρ−1 ⊆ Gal(L′/L) since
L/K is Galois, that the restriction of b to Gal(L′/L) is a homomorphism, and
putting ρ0 := χ′−1ρχ ∈ Gal(L′/K), (4) gives bρ0τvρ−1

0
= bτw and hence ρ0τvρ

−1
0 = τw

in Gal(L′/L) ⊂ Gal(L′/K).
Finally, we claim that ρ0σvρ

−1
0 = σw in Gal(L′/K). Since χ, χ′ ∈ Gal(L), we

already know that σw and ρ0σvρ
−1
0 coincide on Gal(L/K) and hence act equally

on G. Thus, on the one hand, (4) gives

bρ0 b
ρ
σv bσw −1

ρ0
= bσw .

On the other hand, we have ρ0σvρ
−1
0 = ψσw for some ψ ∈ Gal(L′/L). Applying b

to this equality another direct computation gives

bρ0 b
ρ
σv bσw −1

ρ0
= bψbσw .

From the two last equalities we get that bψ = 1. Since b is an isomorphism over
Gal(L′/L), we get ψ = 1, proving the claim. Thus conjugation by ρ0 sends the
decomposition group of v in L′/K to that of w. ¨̂

4. Weak approximation away from BadG

We now restate and prove Theorem 1.1 in the language of approximation proper-
ties. Recall that, given aK-group G, BadG denotes the set of bad places associated
to it (cf. Definition 2.1).

Theorem 4.1. Let K be a number field and G be a finite K-group with weak
approximation away from BadG. Then every semidirect product E = A o G with
A an abelian K-group has weak approximation away from BadE.

Remark.
Note that this result does imply Theorem 1.1. Indeed, one can prove it by induc-
tion starting with the fact that the trivial group has weak approximation.

Proof of Theorem 4.1. Consider a finite set of places S ⊂ ΩK not meeting BadE
and local classes βv ∈ H1(Kv, E) for v ∈ S. We will find a global class β ∈
H1(K,E) mapping to the βv’s in three steps:
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Step 1: Constructing a class β′ ∈ H1(K,E) with prescribed images in H1(Kv, G)
for v in S and in a duplicate of S.

We have the following commutative diagram of pointed sets, with split exact
rows:

(5) H1(K,A)

��

// H1(K,E)

��

// H1(K,G)
vv

��∏
v∈ΩK

H1(Kv, A) //
∏
v∈ΩK

H1(Kv, E) //
∏
v∈ΩK

H1(Kv, G)

uu

The βv’s give us images γv ∈ H1(Kv, G) for v ∈ S. Let n = |E| and L a Galois
extension splitting E. Then, by Proposition 3.2 applied to the extension L(µn)/K
(which splits G), we know that for every v ∈ S there exist places v′ 6∈ S ∪ BadE
for which there are inclusions

φ∗v : H1(Kv, G) ↪→ H1(Kv′ , G).

Choose one such v′ for each v ∈ S and denote by S ′ the set of these places. We
may assume that all the v′ are different since we have an infinite choice at each
time. Define then γv′ := φ∗v(γv) ∈ H1(Kv′ , G).

Since we’ve chosen these new places out of BadE ⊃ BadG, we know by hypothesis
that there exists a global class γ ∈ H1(K,G) mapping onto γv for every v ∈ S∪S ′.
Moreover, we may assume that the restriction of a cocycle c ∈ Z1(K,G), repre-
senting γ, to Gal(L(µn)) is surjective: Indeed by Chebotarev’s density theorem,
there are infinitely many places w 6∈ S ∪ S ′ ∪ BadE totally split in L(µn), so in
particular such that G is constant over Kw; then, for each element g ∈ G we
may choose one such w and an unramified class γw ∈ H1(Kw, G) represented by a
morphism sending σw to g, so that all w’s are distinct; then finally, adding these
local conditions to S ∪ S ′ forces c to be surjective when restricted to Gal(L(µn)).

Let β′ be the image of γ in H1(K,E) via the section of diagram (5). Viewing
G as a subgroup of E, the class β′ is represented by the same cocycle c.

Step 2: Twisting. We twist by c to look for a class in H1(K,E) satisfying the
necessary prescribed local conditions in S.

Let us now twist diagram (5) by the cocycle c representing β′. This gives us the
following new diagram with exact rows

(6) H1(K, Ac )

��

// H1(K, Ec )

��

// H1(K, Gc )

��∏
v∈ΩK

H1(Kv, Ac ) //
∏
v∈ΩK

H1(Kv, Ec ) //
∏
v∈ΩK

H1(Kv, Gc ).

For every cohomology class ξ in a set of diagram (5), we denote by ξc its twisted
image in the corresponding set of diagram (6).

Since the images of βv and β′ coincide on H1(Kv, G) for v ∈ S by construction
and β′c is trivial by the very definition of twisting, we know by exactness that
βc v ∈ H1(Kv, Ec ) comes from an element αv ∈ H1(Kv, Ac ).
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It suffices then to find a global class α ∈ H1(K, Ac ) mapping onto αv for v ∈ S
to conclude. Indeed, the image of α in H1(K, Ec ) would then map onto the βc v’s
for v ∈ S and hence its preimage in H1(K,E) by the twisting morphism would
map onto the βv’s as desired. Thus, in order to conclude, it will suffice by Propo-
sition 2.5 to prove that X1

S(K, Âc ) = X1(K, Âc ).

Step 3: Proof of X1
S(K, Âc ) = X1(K, Âc ). Consider a class α ∈ X1

S(K, Âc ),
i.e. a class in H1(K, Âc ) such that its image αv ∈ H1(Kv, Âc ) is trivial for every
v 6∈ S, so in particular for v′ ∈ S ′. We must show that αv = 0 for v ∈ S too.

Fix then v ∈ S and its corresponding v′ ∈ S ′. Lemma 3.3 applies in this context
to the local classes γv and γv′ = φ∗v(γv), the global class γ and the extension
L(µn)/K. By the lemma the decomposition groups of v and v′ in Gal(L′/K) are
conjugate, where L′ is the extension of L(µn) given by the kernel of c restricted to
Gal(L(µn)). Note moreover that L′ splits Âc . Indeed, since |A| divides n we have
Âc = Hom(cA, µn) and since L′ contains µn, then this amounts to L′ splitting Ac .
The latter holds since the action of σ ∈ Gal(K) on a ∈ Ac is given by cσ aσ c−1

σ ,
where aσ denotes the action of σ on a as an element of A. Since c is trivial over
Gal(L′) and L′ clearly splits A, we get then our claim. In particular, by Lemma 2.6,
we know that the whole group X1

S(K, Âc ) comes by inflation from H1(L′/K, Âc ).
Our element α ∈X1

S(K, Âc ) comes then from H1(L′/K, Âc ) and hence αv comes
from H1(L′(v)/Kv, Âc ), where L′(v) denotes the (unique) extension of Kv induced
by L′/K. The same goes for v′. Since the decomposition groups of v and v′ are
conjugate in Gal(L′/K), there is a canonical isomorphism

H1(L′
(v)
/Kv, Âc )

∼−→ H1(L′
(v′)
/Kv′ , Âc ),

which is compatible with the restrictions from H1(L′/K, Âc ). But α ∈X1
S(K, Âc )

and v′ 6∈ S, so that αv′ = 0 and hence αv = 0 too. Since the same argument works
for every v ∈ S, we deduce that α ∈X1(K, Âc ), proving the claim. ¨̂

5. Counterexamples to weak approximation

In this section we show that Theorem 4.1 is sharp in the sense that one cannot
expect to get approximation (or to solve the Grunwald problem) on the set of bad
places.

Recall that a group is bicyclic if and only if it is cyclic or a direct product of
two cyclic groups. For a finite group G and a finite G-module A, we let

X1
bic(G,A) := ker

H1(G,A)→
∏

H∈bic(G)

H1(H,A)

 ,
where bic(G) denotes the set of bicyclic subgroups of G.

Theorem 5.1. Let G be a finite abelian group, K a number field, and S a finite
set of places of K. Let A be a finite G-module and E = AoG a constant K-group.
Assume:

(1) K contains the exp(A)-th roots of unity;
(2) there exists v0 ∈ S such that G is a Galois group over Kv0;
(3) S contains all the places of K lying above the same rational prime as v0;
(4) X1

bic(G, Â) 6= 0 (in particular G is not bicyclic).
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Then the map H1(K,E)→
∏

v∈S H1(Kv, E) is nonsurjective.

Remark.
Note that, given the structure of local Galois groups recalled in Section 2.1, Con-
dition (4) implies that the place v0 in Condition (2) must divide the order of G.

Corollary 5.2. Assume in addition that K contains the exp(E)-th roots of unity,
then there is a transcendental Brauer-Manin obstruction to weak approximation
on X := SLn/E.

Proof. Indeed, Theorem 5.1 and Proposition 2.4 tell us that X does not have
approximation in S and hence it doesn’t have weak approximation. Now, [Har07,
Thm. 1] tells us that the Brauer-Manin obstruction to weak approximation for
such a variety is the only obstruction, whereas the formula given in [Luc14b, Prop
5.9] tells us that the algebraic part of BrunX is trivial, hence the lack of weak
approximation for X can’t be explained by algebraic obstructions. The Brauer-
Manin obstruction must then come from transcendental elements of BrunX. ¨̂

Example 5.3. Let p be a prime number and consider the group G := (Z/pZ)3.
Let A := Î, where I is the augmentation ideal of (Z/p3Z)[G]. There is a nat-
ural action of G on A and E := A o G is a group of order p3p3 . Define K to
be Q(ζp4) and S to be the unique place of K dividing p. By Lemma 5.4 here
below, we have X1

bic(G, Â) 6= 0 and it is easy to see that all the other assump-
tions of Corollary 5.2 are satisfied, hence the group E provides the first explicit
example of a transcendental Brauer-Manin obstruction to weak approximation on
a homogeneous space.

Lemma 5.4. Let G be a finite group which is not bicyclic of order n, let R be
the group ring (Z/nZ)[G] and I � R the augmentation ideal. Then X1

bic(G, I) is
nontrivial.

Proof. ForA aG-module, denote by Ĥ0(G,A) the Tate cohomology groupAG/NG(A)
where NG(A) := {

∑
σ∈G aσ | a ∈ A}. Put B := R/I ∼= Z/nZ. Since R is an in-

duced H-module for any subgroup H ≤ G, we have Ĥ0(H,B) ∼= H1(H, I) and
hence X1

bic(G, I) is isomorphic to

X0
bic(G,B) = ker

Ĥ0(G,B)→
∏

H∈bic(G)

Ĥ0(H,B)

 .
Since Ĥ0(H,B) ∼= Z/|H|Z for every H ≤ G, and since G 6∈ bic(G), we have:

X0
bic(G,B) ∼= ker

Z/nZ→ ∏
H∈bic(G)

Z/|H|Z

 6= 0.

¨̂

Proof of Theorem 5.1. We divide the proof into five steps.
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Step 1: Setup. We construct local classes in H1(Kv, G), the fibers of which will
contain elements that cannot be approximated by a global element in H1(K,E).

By Condition (2), there exists an epimorphism cv0 : Gal(Kv0) → G. Since
G is abelian and constant, Hom(Gal(K), G) = Z1(K,G) = H1(K,G) and their
equivalents for the Kv’s. One can then look at cv0 as an element of H1(Kv0 , G). We
will omit these identifications from now on and abusively use the same letters for
cocycles and cohomology classes for G. For all v 6= v0 ∈ S, let cv := 0 ∈ H1(Kv, G).

We denote by s : G→ E the section of the following exact sequence

(7) 1 // A // E
π // G //

s
zz

1.

Consider s(cv) ∈ Z1(Kv, E), which we still denote abusively by cv by looking at
G as a subgroup of E via s, and let βv := [cv] ∈ H1(Kv, E). If (βv)v∈S is not
contained in the image of the restriction map H1(K,E) →

∏
S H1(Kv, E), then

we are done. So we can assume that there exists β ∈ H1(K,E) lifting the βv’s for
all v ∈ S. Up to replacing β by s(π(β)), one can assume that β = s(c) for some
c ∈ H1(K,G) lifting the cv’s for v ∈ S. Making once again an abuse of notation,
we’ll write β = [c], viewing c as an element of Z1(K,E).

Step 2: Twisting. To study the fibers over cv, v ∈ S, we twist the exact sequence
(7) by the cocycle c. We get the following twisted exact sequence:

1 // Ac // Ec // Gc //
xx

1,

where we immediately remark that Gc = G since G is abelian. Moreover, since c
takes values in G, the section s is still well defined on these twisted forms.

By definition of twisting, the action of Gal(K) on Ac is given by composition
of the morphism c : Gal(K) → G with the morphism G → Aut(A) defining the
action of G on A.

Step 3: Defining unattainable classes in H1(Kv, E). By Condition (1) of
Theorem 5.1, we know that Â = Hom(A,Q/Z) and the same goes for its twisted
version Ac . Since both G and Gal(K) act trivially on Q/Z, the action of Gal(K)

on Âc corresponds via c with the action of G on Â, so that we get a pullback
morphism c∗ : H1(G, Â)→ H1(K, Âc ).

Note that since G is abelian, Condition (3) of Theorem 5.1 and the structure
of local Galois groups imply that, for all cocycles c ∈ Z1(K,G) and for all places
v 6∈ S, the image of c : Gal(K)→ G restricted to Gal(Kv) is a bicyclic subgroup.
Therefore, for any c ∈ Z1(K,G), the morphism c∗ restricts to a morphism

c∗ : X1
bic(G, Â)→X1

S(K, Âc ).

Condition (4) tells us now that there exists γ 6= 0 ∈ X1
bic(G, Â). Since c

lifts cv0 , and the latter was chosen to be surjective, c must also be surjective.
Hence the above map c∗ is an inflation map and is therefore injective, so that
c∗(γ) 6= 0 ∈X1

S(K, Âc ).
In addition since cv0 is surjective, one has by inflation that c∗(γ)v0 6= 0 in

H1(Kv0 , Âc ), hence c∗(γ) 6∈X1(K, Âc ). By Proposition 2.5, there exists therefore
(αv)v∈S ∈

∏
S H1(Kv, Ac ) which is not in the image of H1(K, Ac ). Note also that

c∗(γ)v = 0 for all v 6= v0 ∈ S since cv = 0 for these places, hence we can assume
that αv = 0 for all v 6= v0.
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Consider now the image in
∏

S H1(Kv, Ec ) of (αv)v∈S. The twisting bijection
H1(·, Ec )→ H1(·, E) tells us that this element is the twist ( β′vc )v∈S of an element
(β′v)v∈S ∈

∏
S H1(Kv, E). We claim that (β′v)v∈S is not in the image of H1(K,E).

Step 4: Compatibility between twists and obstructions. To prove the
latter claim, we first show a certain compatibility relation between the maps c∗
and c′∗ for every two classes c and c′ in Z1(K,G) = H1(K,G) such that cv = c′v in
H1(Kv, G) for all v ∈ S. Namely, we claim that there are canonical isomorphisms
iv : H1(Kv, Ac )

∼−→ H1(Kv, Ac′ ) for v ∈ S such that the following diagram

(8) X1
S(K, Âc )×

∏
S H1(Kv, Ac )

〈 , 〉c //

∏
iv

��

Q/Z

X1
bic(G, Â)

c∗
33gggggggggggggg

c′∗

++WWWW
WWWWW

WWW

X1
S(K, Âc′ )×

∏
S H1(Kv, Ac′ )

〈 , 〉c′ // Q/Z,

is commutative in the following sense: for all γ ∈ X1
bic(G, Â) and all (αv)v∈S in∏

S H1(Kv, Ac ), one has

〈c∗γ, (αv)〉c = 〈c′∗γ, (iv(αv))〉c′ ∈ Q/Z.

The left-hand side arrows in the diagram were defined in Step 3, while the right-
hand side arrows are given by Proposition 2.5. Now, for v ∈ S, since cv = c′v as
cocycles, there exists a natural isomorphism of Gal(Kv)-modules Ac → Ac′ (given
by the identity map) that induces a group isomorphism

iv : H1(Kv, Ac )→ H1(Kv, Ac′ ).

Similarly, one can consider the dual isomorphism Âc′ → Âc which induces a cor-
responding isomorphism îv : H1(Kv, Â)→ H1(Kv, Â) such that

H1(Kv, Âc )

X1
bic(G, Â)

c∗v 55kkkkkkkk

c′∗v
))SSS

SSSS

H1(Kv, Âc′ ) ,

îv

OO

is commutative. Hence the claim reduces to the commutativity of the following
diagram

H1(Kv, Âc )× H1(Kv, Ac )
〈 , 〉c //

iv

��

Q/Z

H1(Kv, Âc′ )× H1(Kv, Ac′ )
〈 , 〉c′ //

îv

OO

Q/Z ,

which is just the functoriality of cup-product (or of local duality), proving the
claim.
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Step 5: Proving that the local classes are globally unattainable. Assume
on the contrary that there exists β′ = [b′] ∈ H1(K,E) lifting the β′v’s for all v ∈ S.
Define c′ := π(β′) ∈ Z1(K,G) = H1(K,G) and consider the class β′′ := s(π(β′)) =
[c′] ∈ H1(K,E) (we are once again doing an abuse of notation with c′).

Let us now twist the exact sequence (7) by the cocycle c′, so that we get the
following twisted exact sequence:

(9) 1 // Ac′ // Ec′ // Gc′ //
xx

1.

where we remark once again that Gc′ = G and that the section s is still well
defined on these twisted forms.

Since β′ and β′′ = [c′] have the same image in H1(K,G), we know that β′c′ must
come from an element α′ ∈ H1(K, Ac′ ) and that its image (α′v)v∈S ∈

∏
S H1(K, Ac′ )

maps to ( β′c′ v)v∈S ∈
∏

S H1(K, Ec′ ). In particular, since (α′v)v∈S comes from a
global element, we know by Proposition 2.5 that

(10) (α′v)v∈S is orthogonal to X1
S(K, Âc′ ) .

Consider now Diagram (8) and the element (αv)v∈S ∈
∏

S H1(Kv, Ac ) from
Step 3. By construction, this element is not orthogonal to c∗(γ) and hence its
image (iv(αv))v∈S ∈

∏
S H1(K, Ac′ ) is not orthogonal to c′∗(γ).

The two elements (iv(αv))v∈S and (α′v)v∈S have the same image in
∏

v∈S H1(Kv, Ec′ )
by construction (recall that cv = c′v for v ∈ S and hence β′c v = β′c′ v). Thus,
(iv(αv))v∈S and (α′v)v∈S differ by an action (as described in (2), §2.4) of an ele-
ment of the group

Coker

(∏
v∈S

H0(Kv, Eb′ )→
∏
v∈S

H0(Kv, Gc′ )

)
.

We denote by (gv)v∈S ∈
∏

S H0(Kv, Gc′ ) a lift of this element.
Now, for all v ∈ S r {v0}, we have by construction β′v = 1 ∈ H1(Kv, E)

and hence b′ (and a fortiori c′) is trivial over Gal(Kv) since E is constant. The
map H0(Kv, Eb′ ) → H0(Kv, Gc′ ) corresponds then to E → G, which is surjective.
Therefore, iv(αv) = α′v and H0(Kv, Gc′ ) acts trivially on iv(αv) for these v. Finally,
the map H0(K, Gc′ ) → H0(Kv0 , Gc′ ) is clearly surjective (recall that Gc′ = G and
hence both groups are equal to G and the map is the identity), hence gv0 lifts to
an element g ∈ H0(K,G). We conclude then that g · (iv(αv))v∈S = (α′v)v∈S.

Note that the natural paring Ac′ × Âc′ → Gm is invariant under the morphism
(g, ĝ−1) : Ac′ × Âc′ → Ac′ × Âc′ given by (a, f)→ (g ·a, ĝ−1 ·f), where ĝ : Âc′ → Âc′
is the dual map to g : Ac′ → Ac′ defined by the conjugation action of G on Ac′ .
By functoriality of cup products [NSW08, Proposition 1.4.2], the cup product
H1(Kv, Ac′ )×H1(Kv, Âc′ )→ Q/Z is also invariant under the morphism induced by
(g, ĝ−1). Since (iv(αv))v∈S is not orthogonal to c′∗(γ), it follows that g · (iv(αv))v∈S
is not orthogonal to ĝ−1(c′∗(γ)). But as c′∗(γ) is in X1

S(K, Âc′ ) so is ĝ−1(c′∗(γ)),
hence we finally get that

g · (iv(αv))v∈S = (α′v)v∈S is not orthogonal to X1
S(K, Âc′ ),

contradicting (10). ¨̂
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