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Abstract. The Hurwitz problem asks which ramification data are realizable, i.e., appear as the
ramification type of a covering. We use dessins d’enfant to show that families of genus 1 regular

ramification data with small changes are realizable with the exception of four families which were

recently shown to be nonrealizable. A similar description holds in the case of genus 0 ramification
data.

1. Introduction

A central goal in algebra, topology and geometry is describing maps using simple combinatorial
data. In the equivalent categories, of topological coverings, branched coverings f : R → S of
(compact connected, orientable1 ) Riemann surfaces, and algebraic morphisms (of smooth projective
curves), each map has a fundamental invariant called its ramification type. The latter is the multiset
of ramification multisets {ef (Q) |Q ∈ f−1(P )} where P runs over branch points of f . For example,
the ramification type of the map P1 → P1 given by x2 is [2][2], where P1 = P1C is the complex
projective line (or equivalently the 2-dimensional real sphere).

The Hurwitz (existence) problem is a classical question in the theory of coverings which seeks to
classify under which conditions such combinatorial data arises from a covering. Since the problem
remains open only in the case of coverings of S = P1, we shall henceforth restrict to this case. An
obvious necessary condition for such data is that it is consistent with the Riemann–Hurwitz formula.
Namely, a tuple E of nontrivial partitions E1, . . . , Er of n is called a ramification data if

(1) gE := 1− n+
1

2
·
r∑
i=1

∑
e∈Ei

(e− 1)

is a nonnegative integer. The integers n, gE , r are called the degree, genus, and number of branch
points of E, respectively. The Hurwitz problem then asks which ramification data are realizable as
the ramification type of a covering of P1?

The case of ramification data of high genus is relatively well understood. Namely, if E is a
ramification data of degree n and genus at least (n+1)/2 then E is realizable, by Edmonds–Kulkarni–
Stong [5]. Moreover in view of recent computations, Zheng suggests [17] that every ramification
type of genus at least 3 and degree at least 5 is realizable. In genus 2, the only infinite family
of nonrealizable ramification types found so far is [2∗][2∗][2∗][3, 5, 2∗], where 2∗ denote that all
remaining elements in the multiset equal 2. Moreover, the nonoccuring genus 1 ramification data in
Zheng’s [17, Table 3] are all “almost-regular”, that is, almost all entries in each multiset are equal.
Such patterns can also be identified among the genus 0 ramification data in [17, Table 2].

We consider families of almost-regular ramification data in the most subtle case where the ram-
ification data is of genus is 0 or 1, that is, where the covering space is either P1 or a torus. Here
a family T = (Ti)i∈N of ramification data with r branch points is called almost-regular of type
[k1, . . . , kr] and error2 at most ε, if there exist a tuple Aj of positive integers different from kj for
each j = 1, . . . , r, such that each Ti is of the form [A1, k

∗
1 ], . . . , [Ar, k

∗
r ] with degree tending to infinity,

1The Hurwitz problem for nonorientable Riemann surfaces reduces to the orientable case [5, Proposition 2.7].
2Note that there are many possible definitions of error, such as the one defined by taking εi,j :=

∑
e∈Ti,j

|e− kj |.
1
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and such that the sum
∑r
j=1

∑
a∈Aj

a ≤ ε. For example, the ramification data [2∗][2∗][2∗][14, 4, 2∗]

are almost-Galois of type [2, 2, 2, 2] with error at most 8.
The ramification type of Galois coverings is regular, that is, almost-regular with error 0. The

ramification types of genus 0 Galois coverings were already known to Klein [9], and the ramification
types of genus 1 Galois coverings are well known to be regular of type [2, 2, 2, 2], or [3, 3, 3], or
[2, 4, 4], or [2, 3, 6]. Particular families3 of almost-regular ramification data of the latter four types
have been well studied. Notably, Pascali–Petronio [14, Theorems 0.4, 0.5, 0.6] give necessary and
sufficient arithmetic conditions on the degrees of the genus 0 ramification data (1) [1, 2∗][1, 4∗][1, 4∗],
(2) [1, 3∗][1, 3∗][1, 3∗], and (3) [1, 2∗][1, 3∗][1, 6∗] to be realizable. Moreover, the realizability of many
almost-regular families of the above types was also proved in the classification of monodromy groups
of indecomposable coverings of low genus, see [6], [11], [12].

On the other hand, recently Do–Zieve [18] showed that the genus 1 ramification data (A) [1, 3, 2∗]
[2∗] [2∗] [2∗] is nonrealizable, and conjectured the nonrealizability of the following data:

(B) [2, 4, 3∗][3∗][3∗]; (C) [2∗][3, 5, 4∗][4∗]; (D) [2∗][3∗][5, 7, 6∗].

See Section 5 for another proof of the nonrealizability of type (A). A simple proof of this conjecture
was given by Corvaja–Zannier [3], and a proof can also be derived from Izmestiev–Kusner–Rote–
Springborn–Sullivan4 [8].

In this paper we give a method of extending realizations of small degree ramification data to
realizations of families of almost-regular ramification data. These imply that with the exception of
the above four families, all families of genus 1 almost-regular ramification data with some bounded
error are realizable, in contrast with the genus 0 situation discussed above.

Theorem 1.1. Let T be a family of almost-regular genus 1 ramification data of type [k1, . . . , kr],
error at most ε, where Ti is not one of the above exceptional types (A)-(D) for i ∈ N. Then all but
finitely many members of T are realizable if ε ≤ 6, or if [k1, . . . , kr] ∈ {[2, 2, 2, 2][3, 3, 3]} and ε ≤ 10.

Moreover, our method allows “gluing” together realizations of almost-regular families of ramifi-
cation data, into families with arbitrary amount of changes with bounded entries. For families of
almost-regular ramification data of type [2, 2, 2, 2] this gives:

Theorem 1.2. Every family of almost-regular ramification data of genus 1 of the form [1k1 , 3m1 , 2∗]
[1k2 , 3m2 , 2∗] [1k3 , 3m3 , 2∗] [1k4 , 3m4 , 2∗] with fixed ki,mi ∈ N ∪ {0}, i = 1, . . . , 4, except for the type
[1, 3, 2∗] [2∗][2∗][2∗] is realizable in all sufficiently large degrees.

The Hurwitz problem can be viewed as combinatorial in nature, but the tools used in its study
are diverse, coming from group theory, topology, and geometry. We use a mix of these techniques
with a focus around Dessins d’Enfant. Given a ramification data E of genus g and three branch
points, a dessin for E is a bicolored (nondirected) graph on a genus g surface, where the multisets
of valencies of white vertices, black vertices, and faces, correspond to the three multisets of E, see
Section 2.1 for the definition of the valency of a face, and the definition in the case of more than
three branch points. The central example here is that of dessins corresponding to families of regular
ramification data of types [3, 3, 3], [2, 4, 4], [2, 3, 6] or [2, 2, 2, 2], which are regular tilings of the torus
by hexagons or squares, called regular dessins, cf. Section 2.2.

It is well known that the the realizability of a ramification data is equivalent to the existence of a
dessin for that data. Thus by making an (absolutely) bounded number of changes to each member
in a family of regular dessins (Ci)i∈N, such as adding or removing an edge or an isolated vertex,
one obtains a family of dessins whose corresponding ramification type is almost-regular. We call
such families of dessins almost-regular. This transition from regular to almost-regular families of

3Many authors consider a generalized almost-regular ramification where one of the multisets has an absolutely
bounded amount of entries, such as [n/2, n/2][2∗][2∗], cf. [15], [13], [?].

4The results in [8] imply that types (B)-(D) are nonrealizable but do not apply to (A).
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dessins is a special case of what will be referred to as local changes later; see Definition 2.2. To prove
Theorem 1.1, we first realize a single ramification type Ti as a dessin Ci for i ∈ N. We then show that
the changes made to obtain Ci from a regular tiling, can also be made to a regular dessin with an
arbitrary sufficiently large number of hexagons or squares, so that all Tj of sufficiently large degree
are realizable, and in fact by a family of almost-regular dessins. This yields a stronger version of
Theorem 1.1, stated explicitly in Theorem 3.6. To prove Theorem 1.2 we show that the constructed
almost-regular dessins can be glued together. This suggests that furthermore, the answer to the
following question is positive:

Question 1.3. Is every family of almost-regular ramification data of genus 1 different from types
(A)-(D) above, with arbitrary error, realizable in all sufficiently large degrees5? Are such families
realizable by families of almost-regular dessins?

Our proof of Theorem 1.1 implies that the answer is positive for families with error ε ≤ 6 or
families of type [2, 2, 2, 2] or [3, 3, 3] with error ε ≤ 10. Theorem 1.2 gives further evidence for a
positive answer where ε is arbitrary but the entries are bounded. We note that our methods can
be used to prove similar results for larger errors ε or larger uniform bounds on the entries but new
methods are required to answer this question entirely.

Similarly, we prove the following partial analogue for genus 0 coverings:

Theorem 1.4. With the exception6 of [2∗][1, 3∗][2, 2, 6∗], every family of almost-regular ramification
data of genus 0 with ε ≤ 6 is realizable in infinitely many degrees. Moreover, for families of type
[2, 2, 2, 2] or [3, 3, 3], the same assertion holds with ε ≤ 10.

In genus 0, we use the weaker notion of quasi-local changes, which allows the error to grow within
a family linearly with the degree, and replace families of regular dessins on the torus by families of
regular spherical type, which are quotients of regular dessins by symmetries of the torus, see Section
6.

The outline of the paper is as follows. We first give some background information on dessins.
Next we explain our theory of almost-regular dessins and local changes. Then we prove the above
results, first for genus 1, and then genus 0.

Acknowledgements: We thank Nir Lazorovich for the help in proving Lemma 3.4 and Konstantin
Golubyev for helpful discussions. We thank Michael Zieve for introducing the composition obstruc-
tion used in Conjecture 6.3, and other helpful discussions. This work is partially supported by
the Israel Science Foundation (grant No. 577/15) and the United States-Israel Binational Science
Foundation (grant No. 2014173). The second author thanks the ISF-UGC joint research program
framework grant No. 1469/14.

2. Preliminaries

2.1. Dessins. We give a very brief introduction into standard results on coverings and dessins. For
more, see e.g. [10]. Let f : R→ P1 be a degree n covering of compact connected Riemann surfaces
with ordered branch point set S := {p1, . . . , pr} and without loss of generality assume pr =∞. Let
p0 ∈ P1 \S. Choose paths γi from p0 to pi, for i = 1, ..., r−1, ordered counter-clockwise. The union
Γ of γi, i = 1, . . . , r − 1 is called a star tree (cf. [10, Section 6.1]). A dessin for f is the inverse
image f−1(Γ), viewed as a vertex-colored graph on R, with vertex set f−1(S ∪ {p0}) and f as a
coloring function on the vertices, that is, we add the label i to each vertex whose image under f is
pi, for i = 1, . . . , r − 1. We follow convention and leave out the color p0 in drawings. Classically

5By the expression “all degrees”, we always mean “all degrees which are compatible with the congruence conditions
prescribed by the ramification type”.

6The nonrealizability of [2∗][1, 3∗][2, 2, 6∗] has already been proved by Zieve.
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the term dessin is often restricted to the case r = 3, with S = {0, 1,∞} and Γ = [0, 1], described
in the introduction. Two dessins D1 and D2 with the same branch point set, or more generally
two colored graphs on surfaces R1 and R2, are equivalent if there exists an orientation-preserving
homeomorphism R1 → R2 under which D1 and D2 are isomorphic as colored graphs. With this
equivalence relation, the choice of paths from p0 to pi does not matter.

The graph-theoretical information given by a dessin embedded in a surface R encodes all “rel-
evant” information about the underlying covering f ; in fact, this information, together with the
branch point set, determines the covering up to isomorphism. In particular, the ramification type
of f can be recovered from the dessin. Namely, for any given branch point pi, i ∈ {1, ..., r − 1},
the corresponding partition in the ramification type of f is simply the multiset of vertex degrees
of points in f−1(pi) in the dessin. Similarly, for the last branch point pr, vertex degrees should be
replaced by degrees of faces in the dessin, where the degree of a face is defined as the number of
vertices of any given label which are adjacent to the face. Note that every face has the same number
of vertices of each label. The Hurwitz existence problem is therefore equivalent to an existence
problem of dessins with a given corresponding ramification type.

We conclude by noting that the graph-theoretical structure of a dessin is of course independent
of the position of the branch points in P1, and that choosing a different ordering of the branch
point set {p1, ..., pr} used for the definition of a dessin corresponds to a duality of graphs (switching
vertex colors, and possibly interchanging faces and vertices of a certain label. To answer existence
questions, we may choose any ordering of the partitions in a given ramification type.

2.2. almost-regular families of dessins and local changes. A regular ramification data is a
ramification data containing only a single entry, up to multiplicity, in each multiset.

A regular dessin is a dessin whose ramification type is regular. In particular, any dessin corre-
sponding to a Galois covering is a regular dessin. The Riemann–Hurwitz formula implies that there
are four genus 1 regular ramification data: [2∗][4∗]2; [2∗][3∗][6∗]; [2∗]4; and [3∗]3, where the exponent
denotes the number of occurrences of a tuple in the ramification data. These are realized in figure
1 below as regular tilings on a torus, that is, as a quotient of one of the regular tilings of the plane
with specified colorings. Here we identify the top and bottom, as well as left and right sides of the
square to get a torus in the usual way. We note that [6, Proposition 5.1.1] implies that every dessin
with regular ramification type7 is equivalent to a tiling of R by regular hexagons.

As in Section 1, we consider only almost-regular families (Ti)i∈N whose irregular entries are the
same for all i, and the higher degree members of this family are obtained by adding regular entries.

Remark 2.1. The results in this paper hold more general for the following definition of almost-
regular ramification data. Call a family T = (Ti)i∈N of ramification data with r branch points of
(generalized) almost-regular of type [k1, . . . , kr] of error at most ε, if deg Ti →∞ as i→∞ and the
sum of errors

∑r
j=1 εi,j is at most ε for every i ∈ N, where the error εi,j is the sum of (“irregular”)

entries in Ti,j different from kj for j = 1, . . . , r. There is no loss of generality in restricting to our
definition, since for a given ε, the number of almost-regular ramification types of a fixed degree with
error at most ε is bounded by a constant independent of the degree of the ramification type. We may
then restrict to suitable subfamilies all of whose members have the same irregular entries.

A change to a dessin consists of adding or removing an edge (connecting a preimage of some
branch point to a preimage of the base point) or an isolated vertex of any color.

Definition 2.2 (Local Changes to Families of Dessins). Let (Ci)i∈N and (Di)i∈N be two families of
dessins on a surface R, all with the same set of branch points. We say that (Ci)i is realizable as
local changes to (Di)i if there exists a constant c ∈ N such that for all i ∈ N, applying at most c

7In [6], two dessins, or more generally normal graphs, with the same ramification type are called combinatorially

equivalent and for regular ramification data this is shown to imply topological equivalence



ALMOST-REGULAR DESSINS D’ENFANT ON A TORUS AND SPHERE 5

(a) [232][416][416] (b) [236][324][612]

(c)
[212][212][212][212]

(d) [312][312][312]

Figure 1. The 4 regular types of dessins on a torus

changes to Ci gives a dessin equivalent to Di. If in addition (Di)i is a family of regular dessins, we
call (Ci)i a family of almost-regular dessins.

Figure 2 shows a family of dessins realizable as local changes to [2∗][2∗][2∗][2∗]. The following
lemma shows that Definition 2.2 is independent of the choice of base graph.

Lemma 2.3. Let (fi)i∈N and (gi)i∈N be two families of coverings from a surface X to P1, with the
same branch point set {p1, ..., pr} ⊂ P1. Let S ⊂ P1 be a star tree passing through p1, ..., pr−1, and let

S̃ be a graph on P1 with vertices p1, ..., pr−1, pr. Denote the dessins Ci = f−1i (S) and C̃i = f−1i (S̃),

respectively Di = g−1i (S), and D̃i = g−1i (S̃) for i ∈ N. If (Di)i is obtained via local changes from

(Ci)i, then also (D̃i)i is obtained via local changes from (C̃i)i.
8

Proof. At first fix i ∈ N and let ni be the degree of fi. Then Ci consists of copies of S glued together
at some of the ramification points of fi. Label the copies of S by Sj for j ∈ Ii. If qj,k ∈ Sj denotes
the preimage of pk under fi for k = 1, . . . , r− 1, then the homotopy lifting property implies that in
the preimage of S̃ under fi, the vertices qj,1, . . . , qj,r−1 are connected by a graph isomorphic (via fi)

to S̃, for j ∈ Ii. Thus the graph C̃i is obtained by replacing each Sj with a copy S̃j of S̃ for j ∈ Ii.
Note that the gluing of the copies S̃j , j ∈ Ji in C̃i is done at the same vertices as the gluing of the

8Of course, local changes between arbitrary families of colored graphs are to be defined exactly as for families of

dessins in Definition 2.2.
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Figure 2. [212][212][1, 1, 211][4, 210]

copies Sj , j ∈ Ii in Ci. Analogously, the same holds for Di and D̃i. Denote the copies of S and S̃

in Di and D̃i by Tj and T̃j for j ∈ Ji, respectively.
Since by assumption (Di)i is obtained via local changes from (Ci)i, there exist subsets I ′i ⊆ Ii

and J ′i ⊆ Ji such that the cardinalities of Ii \ I ′i and Ji \ J ′i are bounded by a constant independent
of i, and an isomorphism φi between the subgraph ∪j∈IiSj and the subgraph ∪j∈J′

i
Tj , for every

i ∈ N. Since C̃i and D̃i are obtained from Ci and Di, respectively, by replacing copies of S with
copies of S̃, the isomorphism φi induces an isomorphism ψi between the subgraph ∪j∈I′i S̃j and the

subgraph ∪j∈J′
i
T̃j , for every i ∈ N. As the number of vertices and edges in the complement of these

subgraphs is bounded by a constant independent of i, (C̃i)i and (D̃i)i differ by local changes. �

Note that if the family (Ci)i of dessins is realizable as local changes to a family (Di)i, then
the corresponding ramification types differ by an absolutely bounded amount of entries, as these
correspond to the degrees of vertices and faces. In particular, if (Ci)i is a family of almost-regular
dessins, then also the family of ramification types of (Ci)i is almost-regular. The converse of this
simple observation can be seen as the second part of Question 1.3.

3. Proofs of the main results for g = 1

3.1. Reduction arguments. Here we review some elementary techniques to reduce existence of
certain ramification types to other types.

3.1.1. Composition. Composition of a degree-n covering f : R → P1 with a non-constant degree-d
rational function g : P1 → P1 yields a degree-nd covering g ◦ f : R → P1. For example, the regular
ramification type [2k][32k/3][6k/3] may be realized by composing a covering of ramification type
[3k/3]3 and suitable choice of branch points with a covering of ramification type [2][2] as follows.
Let f : T→ P1 be a covering from the torus to the sphere, of ramification type [3k/3]3 and branch
point set {∞, 1,−1}. Define g : P1 → P1 by x 7→ x2. The branch points of g are 0 and ∞, and the
only preimages of these are also 0 and ∞, respectively. Multiplicativity of ramification indices then
shows that the branch points of g ◦ f are 0, 1 and ∞, and its ramification type is [2k][32k/3][6k/3].

Composition with rational function preserves “local changes” in the sense of Definition 2.2.

Lemma 3.1. Let (fi)i∈N and (gi)i∈N be two families of coverings R → P1, with the same branch

point set. Let h : P1 → P1 a covering. Let Ci, Di, C̃i, D̃i be the dessins corresponding to fi, gi, h ◦
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fi, h ◦ gi, respectively, for i ∈ N. If (Ci)i is obtained by local changes from (Di)i, then (C̃i)i is

obtained by local changes from (D̃i), i ∈ N.

Proof. Let S := {s1, ..., sk} be the set of finite branch points of h ◦ fi for i ∈ N and T := h−1(S).

Let S ⊂ P1 be a star through S. Then C̃i is equivalent and hence can be replaced by the preimage
under fi of the graph G := h−1(S) with vertex set T . Similarly, D̃i can be replaced by the preimage
under gi of G. Since (Ci)i is obtained by local changes from (Di)i, Lemma 2.3 implies that the
family of colored graphs f−1i (G), i ∈ N, are obtained by local changes from g−1i (G). �

3.1.2. A simple example of a local change. In addition to the the technique of composing maps,
existence of certain ramification data can be obtained by preforming certain moves on realizable
ramification data. An example is the following lemma which changes only certain entries of a
ramification data. We denote by Aj a multiset of entries in the j-th partition.

Lemma 3.2. Let r ≥ 3. Let T be the ramification data [a,A1][b, A2][A3]...[A4]. Assume D is a
dessin with ramification type T in which there exists a vertex of degree a and label 1 adjacent to a
vertex of degree b and label 2. Then the following ramification data is realizable

T (k) := ([a+ k,A1][b+ k,A2][1k, A3]...[1k, Ar]) for every k ∈ N.
Furthermore, if an infinite family of ramification data (Ti)i∈N is realizable by a family of almost-

regular dessins, then the same holds for the corresponding family of ramification data (T
(k)
i )i∈N.

Proof. Replace a line connecting the two vertices of degree a and b by the the construction in Figure
3. This increases the degree of those two vertices by k each; furthermore, k vertices of degree 1 are
added for each other vertex color, and similarly, k faces of degree 1 are added.

Figure 3. Adding k faces of degree 1, and k degree 1 vertices

The second claim follows, since the transition from Ti to T
(k)
i with the above construction adds

only a bounded number of edges and vertices. �

3.2. A method for local changes to dessins on the torus. The following proposition is our
main tool to form dessins on a torus from a single dessin with suitable properties.

We first introduce terminology related to tilings of the plane with regular polygons. Let A be the
2-dimensional plane tiled with polygons of diameter bounded from below. A subset D of polygons
is called a disk of radius r if it consists of all polygons of (graph) distance at most r from a single
polygon, called the center of the disk. Here, the distance of two polygons is the minimal number of
polygons on a path connecting the centers of the polygons. Consider the induced tiling on the torus
obtained from quotienting A by a lattice with generators the longitude and meridian of the torus.
The parallelogram P formed by longitude and meridian is the fundamental domain for the torus.
If a disk of polygons of radius r is completely contained in the inside of the fundamental domain,
then the induced graph on the torus contains a disk of radius r. A family of graphs (Di)i∈N on a
torus contains disks of arbitrary radius if for every r ∈ N, there exists i0 ∈ N such that Di contains
a disk of radius r for all i ≥ i0.
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Proposition 3.3. Let c > 0 be a constant. There exists a constant r = r(c), depending only on
c, with the following property. Let (Ti)i∈N be a family of almost-regular genus 1 ramification data.
If there exist k ∈ N and a dessin Ck for Tk which is obtained by at most c changes to a regular
dessin containing a disk of radius r, then with the exception of finitely many terms, the family (Ti)i
is realizable by local changes to a family of regular dessins containing disks of arbitrary large radius.

Our strategy is to remove part of the regular tiling and replace it with an almost-regular tiling
without changing the rest of the tiles. To do so we show there exists a tiling of the torus consisting
of any sufficiently large number of hexagons and containing disks of arbitrary large radius. The
proof is carried out with hexagons but also applies to squares.

Lemma 3.4. Given n ∈ N, the torus can be tiled by a regular dessin consisting of n hexagons.
Moreover, for all r ∈ N and sufficiently large n compared to r, there is such tiling containing a disk
of radius r.

Proof. We want to show that we can quotient a hexagon tiling of the plane by a parallelogram
lattice containing the centers of n hexagons to obtain a tiling of the torus with n hexagons, which
contains a disk of radius r if n is sufficiently large.

Begin with a tiling of the plane by hexagons. Consider the short exact sequence

1→ Z2 → Z2 → Z/n→ 1.

Finding a parallelogram containing the centers of n hexagons is equivalent to finding a map Z2 → Z2

of determinant n. To get a disk of radius r inside the parallelogram for all sufficiently large n, it
suffices to have side lengths tending to infinity and angle bounded away from 0.

There are three cases. If n = a2 is a square, we use the parallelogram spanned by the columns
of the matrix ( a 0

0 a ) and the angle between the column vectors is a right angle. If n is not a square,
choose a such that a2 < n < (a + 1)2. Then either a2 or (a + 1)2 is nearer to n. Choose k such
that either k = n − a2 ≤ a or k = (a + 1)2 − n ≤ a. In the latter case, use the matrix

(
a+1 k
1 a+1

)
.

This matrix has determinant n, the length of the column vectors is at least a ≥
√
n− 1. The angle

between the column vectors has cosine

(a+ 1)k + a+ 1√
(a+ 1)2 + 1

√
(a+ 1)2 + k2

≤ k + 1√
2(a+ 1)k

≤ 1√
2

+ 0.1

where the last inequality holds for a > 10. Since the result is clearly bounded away from 1, the
angle is bounded away from 0.

In the case where k = n − a2, use the matrix
(
a+1 k
1 a+1

)
and a similar but simpler computation

yields that cosine of the angle is bounded by 1/
√

2 and hence the angle is bounded away from 0.
Picking the parallelogram this way gives a tiling of the torus by n hexagons, and if n is sufficiently
large a parallelogram which contains a disk of radius r. �

Proof of Proposition 3.3. Let Dk be a regular dessin on the torus which without loss of generality
contains a disk of radius r, consisting of regular polygons, and assume that Ck is a dessin of
ramification type Tk which is obtained from Dk by at most c changes. Note that these changes can
only affect a bounded number of polygons in Dk, depending only on c. Consider the fundamental
domain P for Dk in the plane. If r is sufficiently large in comparison to c, then there exists
some parallel to the longitude which intersects none of the polygons affected by the above changes;
analogously for the meridian. That is, we may assume without loss, by translating P , that none of
the changes affect polygons which intersect the meridian or longitude of P .

We can thus extend the tiling of our fundamental domain to a tiling of the plane which matches
a tiling by regular polygons outside of this fundamental domain.

Now choose R ∈ N sufficiently large, e.g. such that, in the extended tiling above, there is a disk
of polygons of radius R which contains the complete fundamental domain P in its interior. By
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Lemma 3.4, for any sufficiently large i ∈ N, we can tile the torus by a regular dessin consisting of
exactly i hexagons (resp. squares), containing a disk of polygons of radius at least R. We remove
hexagons (resp. squares) within the radius r (sub-)disk and replace them by the same changes as
for the dessin Ck. Since this always requires only the fixed number c of changes, we obtain a dessin
Ci of ramification type Ti, for all sufficiently large i, and such that the family (Ci)i arises as ≤ c
changes to a family of regular dessins containing disks of arbitrary large radius, cf. figure 2. �

A key observation for the proof of our main results is that, under the assumptions on (Ti)i∈N,
the implication of Proposition 3.3 is also compatible with composition of maps, as made precise
in Lemma 3.5 below. Note the iterative nature of this lemma, which will be made use of in the
reduction arguments in the following section.

Lemma 3.5. Let (fi)i∈N and (gi)i∈N be families of coverings T → P1 with gi, i ∈ N Galois. Let
(Di)i∈N be a family of regular dessins for (gi)i∈N which contains disks of arbitrary radius, and assume
the dessins (Ci)i∈N for (fi)i∈N are obtained by local changes to (Di)i∈N. Let (Tj)j∈N be a family of
genus 1 almost-regular ramification data and h : P1 → P1 a fixed covering such that the ramification
types of (h ◦ fi)i∈N are contained in (Tj)j∈N. Then (Tj)j∈N are realizable in every sufficiently large

degree by a family of almost-regular dessins (C̃j)j∈N.9

Furthermore, the family (C̃j)j∈N is obtained by local changes to a family of regular dessins con-
taining disks of arbitrary radius.

Proof. At first fix i ∈ N. We first note that by multiplicativity of ramification indices, since the
ramification types of the family h ◦ fi are almost regular of genus 1, the ramification types of the
family h ◦ gi are regular of genus 1. Assume Ci and Di are drawn as preimages of some star tree
S ⊂ P1. Once again, via topological deformation, Di can be assumed to correspond to a tiling of the
plane by regular polygons, quotiented by a lattice. Let Pi be a fundamental domain of this lattice.
Next, choose a star tree S∗ ⊂ P1 passing through all but one branch point of h ◦ fi. Let C̃i and D̃i

be the corresponding dessins for h ◦ fi and h ◦ gi respectively. So C̃i is the preimage f−1i (h−1(S∗)),

with the appropriate vertex coloring. Note D̃i again yields a regular tiling of the torus.
By Lemma 2.3 (and as in the proof of Lemma 3.1), we can replace the dessins (Ci)i (resp. (Di)i)

of (fi)i (resp. (gi)i) by the preimages under (fi)i (resp. (gi)i) of G := h−1(S∗), so that (C̃i)i are

obtained by local changes to (D̃i)i.
It remains to show the assertion for all members of the family (Tj)j and not only those corre-

sponding to ramification types of (h◦fi)i. To do so, it suffices to show that the family (D̃i)i contains
disks of arbitrarily large radius, and apply Proposition 3.3 with sufficiently large r. To obtain this,
we claim that the number of polygons in each neighborhood on T of a vertex in D̃i differs from
the number of polygons in Di by at most a constant factor depending only on h, and independent
of i ∈ N. Indeed, as shown in the proof of Lemma 2.3, the graph Di is obtained by gluing copies
of S together at the preimages of branch points in a certain way; and D̃i is obtained from Di by
replacing each such copy of S by a copy of G = h−1(S∗) and gluing together at the same preimages.
Moreover, when a given copy of the star S around a vertex q0 on the torus is replaced by a copy of
G, then the edges of G may intersect only edges from that copy of S, and vice versa. In particular
every side of a polygon in Di is contained in at most a constant amount d1 of polygons in D̃i, where
d1 is a constant depending only on h and independent of i ∈ N. Since both Di and D̃i are tilings
either by hexagons or by squares, it follows that any disk of polygons of radius r in Di contains
a disk of polygons of radius at least r/d2 in D̃i, where d2 is a constant depending only on h and
independent of i ∈ N. Since by assumption, (Di)i contain disks of arbitrary large radius, this implies

that (D̃i)i contains disks of arbitrary large radius.

9We emphasize here that we obtain a statement for all sufficiently large degrees of some family of ramification

types, and not only for those degrees which correspond to a decomposable covering h ◦ fi!
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Let c be an absolute constant such that (C̃i) is obtained from (D̃i)i by at most c changes, and let

r(c) be the constant from Proposition 3.3. Since (D̃i)i contains disks of arbitrary large radius, there

exists k ∈ N such that D̃k contains a disk of radius at least r(c). Thus, we can apply Proposition 3.3
to realize all ramification data (Tj)j of sufficiently large degree, by local changes to regular dessins
which contain disks of arbitrary large radius. �

3.3. Proof of Theorem 1.1. We now come to the proof of Theorem 1.1. In fact, we prove the
following stronger version for families of almost-regular dessins:

Theorem 3.6. Let (Ti)i∈N be a family of almost-regular genus 1 ramification data of type [k1, . . . , kr],
error at most ε, where Ti is not one of four exceptional types (A)-(D) for i ∈ N. Then all but finitely
many members of (Ti)i are realizable if ε ≤ 6, or if [k1, . . . , kr] ∈ {[2, 2, 2, 2], [3, 3, 3]} and ε ≤ 10.
Moreover, the realizations can be chosen to be families of almost-regular dessins.

Proof. A straightforward check using magma shows that all almost-regular families in genus 1 sat-
isfying the Riemann-Hurwitz formula with ε ≤ 6, and ε ≤ 10 for [3∗][3∗][3∗] and [2∗][2∗][2∗][2∗] are
as follows:

(1) [NR] [3∗][3∗][3∗]
(2) [NR] [3∗][3∗][1, 5, 3∗]
(3) [NE] [3∗][3∗][2, 4, 3∗]
(4) [NR] [1, 3∗][1, 3∗][7, 3∗]
(5) [R1] [1, 3∗][4, 3∗][4, 3∗]
(6) [NR] [2, 3∗][2, 3∗][5, 3∗]
(7) [R4] [3∗][3∗][1, 1, 7, 3∗]
(8) [NR] [3∗][3∗][1, 2, 6, 3∗]
(9) [R5] [3∗][3∗][1, 4, 4, 3∗]
(10) [R6] [3∗][3∗][2, 2, 5, 3∗]
(11) [NR] [3∗][1, 2, 3∗][6, 3∗]

(12) [NR] [2∗][3∗][6∗]
(13) [NR] [1, 3, 2∗][3∗][6∗]
(14) [NR] [3, 2∗][3∗][3, 6∗]
(15) [R2] [2∗][1, 5, 3∗][6∗]
(16) [NR] [2∗][2, 4, 3∗][6∗]
(17) [R24] [1, 1, 4, 2∗][3∗][6∗]

(18) [NR] [2∗][4∗][4∗]
(19) [NR] [1, 3, 2∗][4∗][4∗]
(20) [R24] [1, 1, 4, 2∗][4∗][4∗]

(21) [NR] [2∗][2∗][2∗][2∗]
(22) [NE] [2∗][2∗][2∗][1, 3, 2∗]
(23) [R24] [2∗][2∗][2∗][1, 1, 4, 2∗]
(24) [NR] [2∗][2∗][1, 1, 2∗][4, 2∗]
(25) [NR] [1, 2∗][1, 2∗][1, 2∗][5, 2∗]
(26) [R21] [1, 2∗][1, 2∗][3, 2∗][3, 2∗]
(27) [R26] [2∗][2∗][1, 1, 2∗][3, 3, 2∗]
(28) [R26] [2∗][2∗][1, 3, 2∗][1, 3, 2∗]
(29) [R25] [1, 5, 2∗][2∗][2∗][12, 2∗]
(30) [R29] [13, 5, 2∗][2∗][2∗][2∗]
(31) [R27] [12, 32, 2∗][2∗][2∗][2∗]
(32) [R23] [1, 2∗][1, 2∗][1, 4, 2∗][3, 2∗]
(33) [NR] [2∗][1, 1, 2∗][1, 1, 2∗][6, 2∗]
(34) [R37] [2∗][2∗][1, 1, 1, 3, 2∗][4, 2∗]
(35) [R32] [2∗][2∗][1, 1, 4, 2∗][1, 3, 2∗]
(36) [R33] [2∗][2∗][14, 2∗][6, 2∗]
(37) [NR] [2∗][1, 1, 2∗][1, 3, 2∗][4, 2∗]
(38) [R42] [12, 6, 2∗][2∗][2∗][12, 2∗]
(39) [R36] [14, 6, 2∗][2∗][2∗][2∗]
(40) [R37] [1, 3, 4, 2∗][2∗][2∗][12, 2∗]
(41) [R34] [13, 3, 4, 2∗][2∗][2∗][2∗]
(42) [NR] [1, 6, 2∗][1, 2∗][1, 2∗][1, 2∗]
(43) [NR] [3, 4, 2∗][1, 2∗][1, 2∗][1, 2∗]

We have marked types NR for “no reduction”, R for “reduction” followed by the number of a
type that one may reduce to as justified in the proof below, and NE for “non-existent”. Notice
that NR really ought to stand for “no reduction given,” as it may be possible to reduce types in a
different way than we have done here.

First, we show existence of all ramification types marked “NR”. For each ramification data we
draw a dessin. We use two essentially different approaches for drawings:
Most families are drawn as part of a changed regular tiling, so it clear how to extend them to
larger tilings containing disks of arbitrary radius. Proposition 3.3 then implies the existence of
almost-regular dessins of arbitrary sufficiently large degree for each ramification data with such
corresponding drawing.
The second type of drawings is “nested” (NR 2, 3, 13, 14, 16, and 19) . These are drawn as changes
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to an n × 1 strip of tiles, here visualized in a fundamental domain where the top and bottom, as
well as left and right sides of the drawing are identified. In this case, it is easy to see how to add
one hexagon at a time. This implies that all drawings are realizable in all degrees, completing the
proof for all data labeled NR.

NR4:
[1, 3∗][1, 3∗][7, 3∗]

NR6:
[2, 3∗][2, 3∗][5, 3∗]

NR8:
[3∗][3∗][1, 2, 6, 3∗]

NR11:
[3∗][1, 2, 3∗][6, 3∗]

NR24:
[2∗][2∗][1, 1, 2∗][4, 2∗]

NR25:
[1, 2∗][1, 2∗][1, 2∗][5, 2∗]

NR33:
[2∗][112∗][112∗][62∗]

NR37:
[2∗][1, 1, 2∗][1, 3, 2∗][4, 2∗]
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NR42:
[1, 6, 2∗][1, 2∗]3

NR43:
[3, 4, 2∗][1, 2∗]3

NR19:
[1, 3, 2∗][4∗][4∗]

NR13:
[1, 3, 2∗][3∗][6∗]

NR16:
[2∗][2, 4, 3∗][6∗]

NR14:
[3, 2∗][3∗][3, 6∗]

NR2:
[3∗][3∗][1, 5, 3∗]

Non-existence of types marked NE is shown is section 5.
We next show the existence of all the types marked R by reducing to types marked NR, thereby

completing the proof of Theorem 3.6. The data 5,26,32 is reduced by Lemma 3.2 applied with k = 1.
For the rest of the cases marked “R” we use Lemma 3.1. Case 15 is reduced to case 2 as follows. Let
g be the genus-0 covering of the sphere given by x 7→ x2, and let f be a covering with ramification
type [1, 5, 3∗][3∗][3∗] and branch points (e.g.) 1, −1, ∞ (in this order). Then the composition g ◦ f
has branch points 0, 1, ∞ and ramification type [2∗][1, 5, 3∗][6∗]. Since the first type has already
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been realized in all degrees divisible by 3, this argument yields realizability of the second type in all
degrees divisible by 6, which is all possible degrees.

For all other cases in which we apply Lemma 3.1, we reduce to families of dessins which contain
disks of arbitrary large radius. Existence for types with at least two occurrences of the partition
[2∗] are reduced as follows. Let g be the genus-0 covering of the sphere given by x 7→ x2, and let
f be a covering with ramification type that we reduce to, and assume its branch points are 1, −1,√
−1, −

√
−1 in this order. Then the composition g ◦ f has two branch points, 0 and ∞, with all

ramification indices equal to 2, whereas two branch points the two branch points 1,−1 (resp.
√
−1,

−
√
−1) of f merge into one branch point of g ◦ f . By Lemma 3.5 the reduced ramification data are

realizable in all sufficiently large degrees. Similarly, the other reductions via Lemma 3.1 are given
in the above tables are obtained by composing families of covering f realized by dessins containing
disks of arbitrary radius, with the genus-0 covering g given either by x 7→ x2 or x 7→ x3. �

3.4. Almost-regular families with bounded ramification indices. The next lemma shows
realizations by almost-regular dessins can be combined. It is an ingredient in the proof of Theorem
1.2, which is an existence argument for almost-regular genus 1 types whose ramification indices are
all bounded from above by 3.

Lemma 3.7. Suppose the families of ramification data [Aj , e
∗
j ], [Bj , e

∗
j ], j = 1, . . . , r, are realizable

by almost-regular dessins containing disks of arbitrarily large radius. Then the family [Aj , Bj , e
∗
j ],

j = 1, . . . , r is realizable by almost-regular dessins containing disks of arbitrary large radius.

Proof. The same proof as in Proposition 3.3 applies, only here in sufficiently large degrees, both
the changes for T1 and T2 can be applied simultaneously in a non-overlapping manner to a regular
torus tiling, which then results in the type T . �

Proof of Theorem 1.2: Below, we show existence in infinitely many degrees. Since all families of
dessins of type [2,2,2,2] constructed above, either by drawing or by reduction arguments, contain
disks of arbitrary radius, Proposition 3.3 implies the existence of almost-regular dessins in all suffi-
ciently large degrees.

Let T := [1k1 , 3m1 , 2∗][1k2 , 3m2 , 2∗][1k3 , 3m3 , 2∗][1k4 , 3m4 , 2∗] be a family of almost-regular ramifi-
cation data . Since such families with error at most 10 are realizable by Theorem 1.1, we can assume
that T is almost-regular with error > 10. The idea of the following proof is to “split” the type T
into two halves, in the following way. Set

T1 := [1a1 , 3b1 , 2∗][1a2 , 3b2 , 2∗][1a3 , 3b3 , 2∗][1a4 , 3b4 , 2∗],

T2 := [1c1 , 3d1 , 2∗][1c2 , 3d2 , 2∗][1c3 , 3d3 , 2∗][1c4 , 3d4 , 2∗],

with integers ai, bi, ci, di such that ai + ci = ki and bi + di = mi for each i = 1, . . . , 4 and such that∑4
i=1 ai =

∑4
i=1 bi. The last equality ensures that T1 and T2 are again of genus 1.

If we can now show that the families T1 and T2 are realizable by almost-regular dessins containing
disks of arbitrary large radius, then by Lemma 3.7 the assertion follows for the type T .

Now if we can choose the two types T1 and T2 such that:

(2) T1 and T2 are different from [2∗]4 and [1, 3, 2∗][2∗]3,

then the assertion follows by induction on the error.
If T is of even degree, so that ki +mi is even for all i, then up to permuting the partitions of T ,

we can assume one of the following:

(a) k1,m1 ≥ 2.
(b) k1 ≤ 1 and m1 ≥ 2.
(c) mi ≤ 1 for all i = 1, ..., 4.
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We treat these cases separately. In Case (a), define T1 and T2 via a1 = b1 = 2, ai = bi = 0 for all
i ∈ {2, 3, 4}, thus forcing c1 = k1−2, d1 = m1−2, ci = ki and di = mi for all i ∈ {2, 3, 4}. Assuming
the error is > 10, this leads to data T1, T2 as desired in (2) unless or T is one of 1) [13, 33, 2∗][2∗]3

or 2) [12, 32, 2∗][1, 3, 2∗][2∗]2; in those two cases, T2 would become a non-existent type.
In Case (b), because of even degree and genus 1, we have ki ≥ 2 for some i ∈ {2, 3, 4}, without

loss for i = 2. Define T1 and T2 by b1 = 2 = a2 and ai, bj = 0 otherwise. This works unless T was
one of 3) [1, 33, 2∗][12, 2∗][2∗]2, 4) [32, 2∗][13, 3, 2∗][2∗]2, or 5) [32, 2∗][12, 2∗][1, 3, 2∗][2∗].

In Case (c), note that the condition
∑4
i=1 ki =

∑4
i=1mi together with even degree leave only

two types with error > 10, namely [1, 3, 2∗]3[2∗] and [1, 3, 2∗]4. The latter one can be split into
[1, 3, 2∗]2[2∗]2 and [2∗]2[1, 3, 2∗]2. The type 6) [1, 3, 2∗]3[2∗] cannot be split, and is therefore another
exception.

Next, assume T is of odd degree, so ki + mi is odd for all i and in particular, every partition
in T must contain at least one odd entry. Then, up to permuting the partitions in T , one of the
following holds:

(d) k1, k2 ≥ 1 and m3,m4 ≥ 1.
(e) m2 = m3 = m4 = 0.
(f) k2 = k3 = k4 = 0.

In Case (d), set a1 = a2 = b3 = b4 = 1 and ai, bj = 0 otherwise. This works except when T is
one of 7) [12, 3, 2∗][1, 2∗][3, 2∗]2 and 8) [1, 2∗]2[3, 2∗][1, 32, 2∗].

In Case (e), note that k2, k3, k4 ≥ 1, and hence m1 ≥ 3. Set a2 = a3 = a4 = 1, b1 = 3 and
ai, bj = 0 otherwise. This succeeds unless T is one of 9) [1, 2∗]3[33, 2∗] or 10) [1, 2∗]3[1, 34, 2∗].

Finally, Case (f) can be treated just like Case (e), with the roles of entries equal to 1 and equal to
3 exchanged. The exceptional cases here are then exactly 11) [3, 2∗]3[13, 2∗] and 12) [3, 2∗]3[14, 3, 2∗].

It therefore suffices to deal with the total of 12 above “exceptional” types. Firstly, the six types 5)
[32, 2∗][12, 2∗][1, 3, 2∗][2∗], 6) [1, 3, 2∗]3[2∗], 9) [1, 2∗]3[33, 2∗], 10) [1, 2∗]3[1, 34, 2∗], 11) [3, 2∗]3[13, 2∗],
12) [3, 2∗]3[14, 3, 2∗], are drawn in at the end of the proof. The following types (on the right) arise
via appropriate composition of genus zero and genus one types by Lemma 3.1:

5)→ 3): [32, 2∗][12, 2∗][1, 3, 2∗][2∗]→ [1, 33, 2∗][12, 2∗][2∗]2;
3)→ 1): [1, 33, 2∗][12, 2∗][2∗]2 → [13, 33, 2∗][2∗]3;
6)→ 2): [1, 3, 2∗]3[2∗]→ [12, 32, 2∗][1, 3, 2∗][2∗]2;

11)→ 4): [3, 2∗]3[13, 2∗]→ [32, 2∗][13, 3, 2∗][2∗]2.

In the first reduction 5)→3) we compose a genus-1 covering f with the ramification type on the left
with a degree-2 genus-0 covering g of ramification type [2][2], with the following conditions:
The two points of ramification structure [12, 2∗] and [2∗] for f lie in a common fiber of g; same for
the two points of ramification structure [32, 2∗] and [1, 3, 2∗]; the two ramified points of g do not
ramify further under f .
For 3)→1), we compose the genus zero ramification type [2][2] in the obvious way with the genus
one type on the left. A similar composition works in the other two reductions.

Note that for these four reductions, we make use of Proposition 3.3 and Lemma 3.5. To apply

these, it suffices to note that the genus-1 families were realized by almost-regular dessins containing
disks of arbitrary radius.

Types 7)-8) arise from the types on the left via Lemma 3.2 with k = 1:

[1, 1, 2∗][2, 2∗][2∗][32, 2∗]→ [1, 2∗]2[3, 2∗][1, 32, 2∗];
[1, 3, 2∗][2∗][2, 2∗][1, 3, 2∗]→ [12, 3, 2∗][1, 2∗][3, 2∗]2.

The dessins that follow complete the proof for the 12 exceptional types and hence the theorem. �
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type 6:
[1, 3, 2∗]3[2∗]

type 5:
[32, 2∗][12, 2∗][1, 3, 2∗][2∗]

type 11:
[3, 2∗]3[13, 2∗]

type 9:
[1, 2∗]3[33, 2∗]

type 12:
[3, 2∗]3[14, 3, 2∗]

type 10:
[1, 2∗]3[1, 34, 2∗]

4. Realizability of almost-regular ramification data on a sphere

In this section we prove Theorem 1.4, but first we note several differences from the genus 1
case. Firstly, families of almost-regular ramification data of genus zero are in general not realizable
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in all degrees, see Section 1. In particular, it should be noted that the argument of Proposition
3.3, ensuring existence in all sufficiently large degrees, does not apply here. Secondly, the notion
of regular ramification types is not of use here, since, as a consequence of the Riemann-Hurwitz
formula, there are no infinite families of regular ramification data in genus zero. We therefore
provide a pure existence result (Theorem 1.4) for the case of genus 0. See however the appendix,
where we develop terminology generalizing the notions of regular dessins and of local changes, and
give some evidence for strengthening of Theorem 1.4.

Proof of Theorem 1.4. A straightforward calculation shows that all of the genus 0 almost-regular
ramification data satisfying the Riemann-Hurwitz formula with ε ≤ 10 from the types [3∗]3 or [2∗]4,
or with ε ≤ 6 from [2∗][3∗][6∗] or [2∗][4∗][4∗] are exactly the ones in the following list:

(1) [NR] [1, 3∗][1, 3∗][1, 3∗]
(2) [R1] [3∗][3∗][1, 1, 1, 3∗]
(3) [NR] [1, 3∗][1, 3∗][2, 2, 3∗]
(4) [NR] [1, 1, 3∗][2, 3∗][2, 3∗]
(5) [NR] [3∗][1, 2, 3∗][1, 2, 3∗]
(6) [R4] [3∗][3∗][1, 1, 2, 2, 3∗]
(7) [NR] [1, 3∗][1, 3∗][1, 1, 5, 3∗]
(8) [NR] [1, 3∗][1, 3∗][1, 2, 4, 3∗]
(9) [NR] [1, 3∗][1, 1, 2, 3∗][4, 3∗]
(10) [NR] [1, 3∗][2, 2, 3∗][2, 2, 3∗]
(11) [NR] [1, 2, 2, 3∗][2, 3∗][2, 3∗]
(12) [R1] [1, 1, 3∗][1, 4, 3∗][2, 3∗]
(13) [NR] [1, 1, 3∗][1, 1, 3∗][5, 3∗]
(14) [R13] [3∗][3∗][14, 5, 3∗]
(15) [R12] [3∗][3∗][13, 2, 4, 3∗]
(16) [R10] [3∗][3∗][1, 24, 3∗]
(17) [NR] [3∗][1, 1, 4, 3∗][1, 2, 3∗]
(18) [NR] [3∗][1, 2, 3∗][23, 3∗]
(19) [NR] [3∗][13, 3∗][1, 5, 3∗]
(20) [NR] [3∗][13, 3∗][2, 4, 3∗]

(21) [NR] [1, 2∗][1, 3∗][1, 6∗]
(22) [R2] [2∗][1, 1, 1, 3∗][6∗]
(23) [R47] [14, 2∗][3∗][6∗]
(24) [R1] [2∗][1, 1, 3∗][2, 6∗]
(25) [NR] [2∗][2, 3∗][1, 1, 6∗]
(26) [NR] [1, 2∗][3∗][1, 2, 6∗]
(27) [NR] [1, 1, 2∗][1, 2, 3∗][6∗]
(28) [NR] [2∗][1, 3∗][1, 3, 6∗]
(29) [NE] [2∗][1, 3∗][2, 2, 6∗]
(30) [R25] [2∗][3∗][1, 1, 4, 6∗]
(31) [NR] [2∗][3∗][1, 2, 3, 6∗]

(32) [R2] [2∗][3∗][2, 2, 2, 6∗]
(33) [R5] [2∗][1, 1, 2, 2, 3∗][6∗]
(34) [NR] [1, 2∗][2, 2, 3∗][1, 6∗]
(35) [NR] [1, 1, 2∗][2, 3∗][2, 6∗]
(36) [R25] [3, 2∗][3∗][13, 6∗]
(37) [R45] [13, 2∗][3∗][3, 6∗]

(38) [NR] [1, 2∗][1, 4∗][1, 4∗]
(39) [R47] [14, 2∗][4∗][4∗]
(40) [NR] [2∗][4∗][1, 1, 2, 4∗]
(41) [R38] [2∗][2, 4∗][1, 1, 4∗]
(42) [NR] [1, 1, 2∗][4∗][1, 3, 4∗]
(43) [R47] [1, 1, 2∗][4∗][2, 2, 4∗]
(44) [R45] [1, 1, 2∗][2, 4∗][2, 4∗]

(45) [NR] [1, 2∗][1, 2∗][1, 2∗][1, 2∗]
(46) [NR] [2∗][2∗][2∗][14, 2∗]
(47) [R45] [2∗][2∗][1, 1, 2∗][1, 1, 2∗]
(48) [NR] [1, 2∗][1, 2∗][1, 2∗][1, 1, 3, 2∗]
(49) [R46] [1, 2∗][1, 2∗][13, 2∗][3, 2∗]
(50) [R48] [2∗][2∗][1, 1, 2∗][13, 3, 2∗]
(51) [R49] [2∗][2∗][14, 2∗][1, 3, 2∗]
(52) [R45] [2∗][1, 1, 2∗][1, 1, 2∗][1, 3, 2∗]
(53) [NR] [15, 3, 2∗][2∗][2∗][2∗]
(54) [NR] [1, 2∗][1, 2∗][13, 2∗][1, 4, 2∗]
(55) [R58] [2∗][2∗][16, 2∗][4, 2∗]
(56) [R59] [2∗][2∗][14, 2∗][1, 1, 4, 2∗]
(57) [NR] [2∗][12, 2∗][12, 2∗][12, 4, 2∗]
(58) [NR] [2∗][1, 1, 2∗][14, 2∗][4, 2∗]
(59) [NR] [12, 2∗][12, 2∗][12, 2∗][4, 2∗]
(60) [NR] [14, 4, 2∗][2∗][2∗][12, 2∗]
(61) [NR] [16, 4, 2∗][2∗][2∗][2∗]
(62) [NR] [13, 4, 2∗][1, 2∗][1, 2∗][1, 2∗]

Once again we label R for “reduction” and add the number of the type that we reduce to, label
NR for “no reduction given”, and NE for “non-existent”.

For all types marked “NR” see the drawings in the pdf companion. It is easy to see that all of
them can be drawn iteratively in infinitely many degrees by adding rings of hexagons around the
middle.
The reduction arguments indicated above are carried out as in Section 3.3. Here a reduction to a
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family that has already been realized in infinitely many degrees yields the same result for the family
marked “R”. With the exception of types 12, 36, 49, 52 where the reduction is via Lemma 3.2, the
reductions are all done by composing with a genus 0 covering. We carry out two of the reductions
deserving special attention explicitly.
Firstly, the type 30 can be obtained in the following way: Let h : P1 → P1 be defined by x 7→
x2(x− 1). This covering has ramification type [2, 1][2, 1][3]. Denote by ai,j the unique preimage of
the i-th branch point of h with multiplicity j, for 1 ≤ i, j ≤ 2. Let g be a covering of ramification
type [2∗][2, 3∗][1, 1, 6∗], whose branch points (in this order) are a1,1, a2,2 and a2,1. Then h ◦ g has
ramification type [2∗][1, 1, 4, 6∗][3∗].
Secondly, Lemma 3.2 yields type 52 from type 45 by adding an edge between a vertex of degree 2
and an adjacent one of degree 1. To make sure that there are two such adjacent vertices, it suffices
to observe that if all vertices of degree 1 were connected to each other, they would form their own
connected component, contradicting that the whole dessin is connected.

Finally, we show that the type [2∗][1, 3∗][2, 2, 6∗] is nonrealizable. This argument was also previ-
ously used by Zieve to show the nonrealizability of this type. We first claim that this ramification
type has to correspond to a decomposable covering. Indeed, call P1, P2, P3 the points over which
we have ramification [2∗], [1, 3∗], [2, 2, 6∗], respectively. By Lemma 9.1.1 in [11], the function has to
factor through a degree 2 function with ramification [2][2] over P1, P3, proving the claim. However,
since there is no way to split [1, 3∗] among the two preimages of P2, this ramification data does not
occur for decomposable coverings either. �

We conclude this section by noting that, as the error is increased, one can construct infinitely
many almost-regular families of spherical ramification types which are not realizable, using the same
Lemma 9.1.1 in [11] as above. Compare once again with the situation in genus 1, where conjecturally
there are only four exceptional families. Furthermore, we expect that as we allow more than six
changes to [2, 3, 6] and [2, 4, 4] types, there will be more ramification types which are realizable only
as quasi-local changes.

5. Proofs of Nonexistence of Almost-Regular Ramification Types on a Torus

In this section we prove following genus-1 ramification types are not realizable.
[3∗][3∗][2, 4, 3∗] [2∗][2∗][2∗][1, 3, 2∗] [2∗][4∗][3, 5, 4∗] [2∗][3∗][5, 7, 6∗]

Note the last two on this list have ε ≥ 7, but they are shown not to exist in [8], so we include
them here for completeness.

Corjava and Zannier [3] have provided a non-existence argument for the first type. The proof
uses a counting argument for divisor classes in the Picard group of an elliptic curve.

The next argument shows nonexistence of [2∗]3[1, 3, 2∗], proven independently by Do-Zieve [18].

Theorem 5.1. The ramification type [2∗]3[1, 3, 2∗] is not realizable in any degree.

Proof. Since every dessin is induced by a covering, it suffices to prove the following statement:
Let n ≥ 4 be an even integer. There are no permutations σ1, ..., σ4 ∈ Sn such that all of the following
hold:

a) σ1 is of cycle type [1, 2∗, 3],
b) σ2, ..., σ4 are all of cycle type [2∗],
c) σ1 · · ·σ4 = 1.

Assume that such σ1, ..., σ4 exist. By c), we have σ1σ2 = (σ3σ4)−1, so σ1σ2 and σ3σ4 have the
same cycle type. We will investigate this cycle type, first by looking at σ3 and σ4, and then by
looking at σ1 and σ2.

Firstly, note that when investigating the cycles of a product xy, we can treat each orbit of the
group 〈x, y〉 separately, because every orbit of the latter group is of course a union of orbits of (the
cyclic group generated by) xy ∈ 〈x, y〉, i.e. a union of cycles of xy.
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Now σ3σ4 is a product of two fixed-point free involutions. Restrict the action of 〈σ3, σ4〉 to one
of its orbits. Denote the images of x ∈ 〈σ3, σ4〉 on this orbit by x. Of course, σ3 and σ4 are still
fixed-point free involutions. Note also that 〈σ3, σ4〉 is transitive. But a transitive group generated
by two involutions is a dihedral group D2k (of order 2k for some k ∈ N), and the fact that the
involutions act without fixed points forces the product σ3σ4 to have exactly two cycles of length k.

This last claim is of course easy to see in a purely combinatorial way, but can also be shown
elegantly using dessins: As a special case of Riemann-Hurwitz formula, the element σ3σ4 has to
have exactly two cycles, and the genus of (σ3, σ4, (σ3σ4)−1) is then zero (no other choice for σ3σ4
would make this genus a non-negative integer). The corresponding dessin is then a connected planar
graph with all vertices of degree 2, i.e. a circle. Therefore the two faces have the same degree k.

The above shows that every cycle length of σ1σ2 occurs an even number of times.
We now investigate the orbits of U := 〈σ1, σ2〉. Without loss of generality, assume that the 3-cycle

of σ1 is (1, 2, 3), and the fixed point is 4.
First, note that all orbits of U are of even length (since these orbits are unions of cycles of σ2, and
the latter has only cycles of length 2), and are unions of cycles of σ1. In particular, 1, 2, 3 and 4
have to be contained in the same orbit of U . Denote this orbit by O. The image of σ1 on O is then
still of cycle type [1, 2∗, 3], and the image of σ2 is still of type [2∗]. As above, denote images by x,
and note that U acts transitively. The Riemann-Hurwitz formula then forces σ1σ2 to have exactly
two cycles (and the tuple (σ1, σ2, (σ1σ2)−1) is of genus zero by the Riemann-Hurwitz formula). But
now there are only two cases, each of which will lead to a contradiction:

i) σ1σ2 has two cycles of the same length k.
We then obtain a planar dessin of type ([1, 2∗, 3], [2∗], [k, k]). However such a dessin does
not exist (see e.g. [13, Lemma 4.7]).

ii) σ1σ2 has two cycles of different lengths k1 6= k2.
But note that on all other orbits of U (except for O), σ1 and σ2 both act as fixed point free
involutions; so by the same argument as above, every cycle length of σ1σ2 in the action on
any of these orbits occurs an even number of times. Adding the one missing orbit O, we
find that the cycle length k1 (and of course also k2) occurs an odd number of times in σ1σ2.
But we showed above that all cycle lengths of σ1σ2 occur an even number of times. This
contradiction ends the proof.

�

For geometric insight, we summarize the proof of [8] for nonexistence of [3∗][3∗][2, 4, 3∗]. The
same idea may be used to proved nonexistence of [2∗][4∗][3, 5, 4∗] and [2∗][3∗][5, 7, 6∗].

Let T be a torus with a hexagonal tiling. We put an equilateral metric on T by declaring that every
edge has length 1, and every hexagon is a Euclidean regular hexagon. If there were a [3∗][3∗][2, 4, 3∗]
tiling of the torus, it would be a regular tiling of hexagons with three hexagons meeting at each
vertex, except at two special vertices, one with two hexagons meeting, and one with 4 hexagons.
This would induce a euclidean metric with exactly two cone singularities, in which every point has a
neighborhood either isometric to an open subset of the euclidean plane, or to the apex of a euclidean
cone.

In [8], a contradiction is obtained by studying the holonomy groups of such metrics, and proving
the holonomy theorem which states that in a Euclidean cone metric with two cone points, of cur-
vature ± 2π

n , the holonomy group H contains the cyclic group Cn of order n as a proper subgroup
Cn � H.

The holonomy group of a surface, M , with Euclidean cone metric is generated by π1(M) together
with loops around each of the cone points. It is shown in [8] that any hexangulation of M with
vertices that can be two-colored has holonomy group that is a subgroup of C3. We can also see
this by looking at the developing map into the Euclidean plane, and noticing that the tiling has a
3-symmetry. However, the assumptions on the extra vertices of [3∗][3∗][2, 4, 3∗] imply C3 is a proper
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subgroup of the holonomy group (= C3), which is a contradiction. The idea of the proof of the
holonomy theorem is to find additional loops in π1M by pushing paths into the digon formed by
the geodesics between the two cone points.

This argument works only for types which have changes only in one partition, as this condition
is necessary to define a Euclidean cone metric.

Remark 5.2. Any tiling of the torus gives an infinite tiling of the plane, as the torus is a quotient
of the plane. To extend a tiling on the torus with local changes to a tiling of the plane with the same
local changes, fill in the rest of the lattice outside the fundamental domain with a tiling of regular
hexagons (or squares). However, Dress [4] has proved there are small changes to hexagon and square
tilings, which tile the plane but not the torus. For example, it is possible to tile the plane with four
edges meeting at every vertex, with a tiling of all squares except one pentagon and one triangle. As
shown above, such a tiling, of ramification type [2∗][4∗][3, 5, 4∗], is not possible on the torus.

6. Appendix: Quasi-local changes and stability in permutations

Section 4 contains a pure existence result for almost-regular ramification types of genus 0. It is
natural to try to prove a “local changes” property as well, as in Theorem 3.6. To do so, we first
have to generalize the notion of regular dessins.

6.1. Regular Spherical Types as Quotients of a Regular Type on a Torus. For any degree-
n covering f : P1 → P1 of ramification type [s1, ..., sr] (where the si are partitions of n), let g be
the Galois closure of f , i.e. the (unique) Galois covering g of minimal degree factoring as g = f ◦ h
for some covering h. We call the ramification type [s1, ..., sr] a regular spherical type, if g is of one
of the four regular ramification types of genus one. It is well-known that for a Galois covering, all
ramification indices over one given branch point pi are the same, and in the above scenario are in
fact equal to lcm(si) := lcm(ei,1, ..., ei,j) where [ei,1, ..., ei,j ] is the partition si.

A regular spherical ramification type is a special case of an almost-regular ramification type.
With this background, we can rephrase our above notion of regular ramification types:

Lemma 6.1. Assume that a covering f : P1 → P1 of ramification type [s1, ..., sr] exists. Then the
following are equivalent:

i) This type is a regular ramification type, with Galois closure of ramification type [k∗1 , ..., k
∗
r ]

(one of [2∗]4, [3∗]3, [2∗][4∗]2, or [2∗][3∗][6∗]).
ii) For all i, lcm(si) = ki.

iii) There is a Galois covering g : T → P1 from the torus to the sphere and a subgroup U of
the corresponding Galois group, such that f : T/U → P1 is the induced map on the quotient
space.

Note that our definition of regular spherical ramification types is a natural analog of regular
ramification types in genus 1. Namely, by the Riemann-Hurwitz formula, the coverings from the
torus to the sphere whose Galois closure is still of genus 1 are exactly those of regular ramification
type.

Examples. There are several different regular spherical types, which may be drawn in non (graph)
isomorphic ways. E.g.

[1, 2∗]4 [14, 2∗][2∗]3 [1, 1, 2∗]2[2∗]2

are all of the regular almost-regular types [2, 2, 2, 2]. They can also be constructed more geometri-
cally: Consider the [2∗] tiling of the torus. This tiling has a 2-symmetry. The symmetry matches
that of an individual hexagon: the two points of each color are opposite each other. This symme-
try corresponds to a deck transformation of order two on the universal cover which is a tiling of
the plane. Depending on the number of hexagons in the original torus tiling, the quotient by this
2-symmetry is one of the three possible regular spherical tilings for [2∗]4. Similarly, we can see the
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Figure 13. Regular [2, 2, 2, 2] and [3, 3, 3] Spherical Dessins

regular spherical tilings for the other types also as quotients by a symmetry. The [3∗]3 tiling has
a quotient by a 3-symmetry, to give a regular spherical dessin, see figure 13. The [2∗][3∗][6∗] tiling
has a quotient by a 6- symmetry, and the [2∗][4∗][4∗] tiling has a quotient by a 4-symmetry to give
the respective regular spherical dessins.

With this view point, we want to see the ramification data as changes to these regular spherical
types. However, we must suitably generalize our notion of local changes.

6.2. Quasi-local changes. Below, we generalize the notion of local changes:

Definition 6.2. [Quasi-local changes] Let (Ci)i∈N and (Di)i∈N be two families of dessins on a
surface R, all with the same set of branch points. Let ni be the degree of the covering associated
to Ci, and mi be the degree of the covering associated to Di. Assume that ni,mi → ∞. We say
that (Ci)i is realizable as quasi-local changes to (Di)i if Ci can be transformed into Di with ki ∈ N
changes where limi→∞ ki/ni = 0.

Question 6.3. Assume that a family of almost-regular ramification types of genus zero is realizable.
Is it then true that it is realizable as quasi-local changes to a family of dessins of regular spherical
type?

We found Question 6.3 to have a positive answer for all of the ramification types with the
restrictions of Theorem 1.4. In fact, it is not difficult to verify from our drawings that all the
[2, 2, 2, 2]-, [3, 3, 3]- and [2, 4, 4]-almost-regular types in that theorem are still realizable as local
changes to a regular spherical dessin. However, computational evidence suggests that the latter is no
longer true for all [2, 3, 6]-almost-regular types, and in particular not for the type [2∗][2, 3∗][1, 1, 6∗].

In trying to answer Question 6.3, it may be useful to note that our reduction lemmas 3.1 and 3.2
still remain true (with the same proofs) after replacing the notion of local changes by quasi-local
changes.

6.3. Stability in permutations. To give some more evidence why it is reasonable to expect Ques-
tion 6.3 (as well as Question 1.3) to have a positive answer, and in particular to justify the above
notion of quasi-local changes, we relate them to a purely group-theoretical conjecture by Arzhantseva
and Paunescu ([1]).
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Recall the following, which is a version of the well-known Riemann existence theorem:

Proposition 6.4. Let E := (E1, . . . , Er) be a ramification data, where the Ei are partitions of n.
Then E occurs as the ramification type of a covering of P1 if and only if there exist permutations
σ1, ..., σr ∈ Sn with the following properties:

i) The cycle type of σi is given by the partition Ei, for all i = 1, ..., r.
ii) σ1 · · ·σr = 1.

iii) The group generated by σ1, . . . σr is a transitive subgroup of Sn.

Due to the natural correspondence of dessins and tuples of permutations, the definition of local
or quasi-local changes for families of dessins has a natural analog for tuples of permutations. This
notion is closely related to an existing notion of stability in permutations.

Definition 6.5 (Stability). Let Fm = 〈a1, ..., am〉 be the free group of m generators, and R ⊂ Fm
a finite set. For ξ ∈ R and elements x1, ..., xm of some group H, denote by ξ(x1, ..., xm) the image
under the unique homomorphism Fm → H with ai 7→ xi.

Permutations p1, ..., pm ∈ Sn are called a solution of R if ξ(p1, ..., pm) = 1 for all ξ ∈ R. They are
called a δ-solution of R if dH(ξ(p1, ..., pm), 1) < δ for all ξ ∈ R, where dH denotes the normalized

Hamming distance in Sn, i.e. dH(p, q) := |{x:1≤x≤n,p(x) 6=q(x)}|
n .

The system R is called stable (in permutations) if ∀ε > 0∃δ > 0∀n ∈ N : For every δ-solution
p1, ..., pm ∈ Sn to R, there exists a solution p̃1, ...p̃m ∈ Sn to R such that dH(pi, p̃i) < ε (for all
i = 1, ...,m). The group G = Fm/〈R〉 is called stable if R is stable.

As noted in [1], this definition is independent of the choice of the set R of relators for a group
G. The notion of stability can be viewed as a group-theoretical analog of our notion of quasi-
local changes for dessins. In the case of regular dessins of genus 1, the associated permutation
tuples as in Proposition 6.4 are of orders (2, 2, 2, 2), (3, 3, 3), (2, 4, 4) or (2, 3, 6). One may then
ask whether, for a family of almost-regular dessins, the associated permutation tuples are close
(in the sense of definition 6.5) to some permutation tuples of the above orders. Therefore, the
groups we are interested in are the groups ∆(2, 2, 2, 2), ∆(3, 3, 3), ∆(2, 4, 4) and ∆(2, 3, 6), where

∆(k1, ..., kr) := 〈a1, ..., ar | akii = 1 for i = 1, ..., r〉. The structure of these four groups is well known:
They all have a normal subgroup isomorphic to Z2, and with cyclic quotient group (of order 2, 3, 4
and 6 in the respective cases). In particular, all these groups are (polycyclic-by-finite and therefore)
residually finite and (solvable and therefore) amenable. It follows that all these groups (along with
all their quotients) are “weakly stable” in the sense of [1, Def. 7.1], see Theorem 1.1 of that paper.

It is conjectured in that paper that a group all of whose quotients are weakly stable is in fact
stable ([1, Conjecture 1.2]). Under this conjecture, the above groups would indeed all be stable.
This would then imply that for any family of dessins of “almost-regular” ramification type (say,
close to a regular type [k∗1 ]...[k∗r ]), it is possible to transform the corresponding permutation tuple
into a tuple (σ1, ..., σr) with ord(σi) = ki for all i = 1, ..., r, with “quasi-local” changes in the sense
of Definition 6.5. (Note however, that this notion for permutation tuples is still slightly weaker than
our notion of quasi-local changes for families of dessins; in particular, the group 〈σ1, ..., σr〉 need
not be transitive; and if it is transitive, then the genus of the corresponding dessin need not be the
same as the genus of the almost-regular type.)
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