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Abstract. For a degree n polynomial f ∈ Q[x], the elements in the fiber f−1(a) ⊆
C are of degree n over Q for most values a ∈ Q by Hilbert’s irreducibility theorem.
Determining the set of exceptional a’s without this property is a long standing
open problem that is closely related to the Davenport–Lewis–Schinzel problem
(1959) on reducibility of separated polynomials. As opposed to previous work which
mostly concerns indecomposable f , we answer both problems for decomposable
f = f1 ◦ · · · ◦ fr, as long as the indecomposable factors fi ∈ Q[x] are of degree ≥ 5
and are not xn or a Chebyshev polynomial composed with linear polynomials.

1. Introduction

Given a degree n (rational) map f : X → P1Q (between smooth projective curves),
Hilbert’s irreducibility theorem [31] asserts the existence of infinitely many a ∈ Q for
which the fiber f−1(a) ⊆ C is irreducible1 over Q, that is, it’s elements are of degree
n over Q. Moreover, letting Redf = Redf (Q) denote the set of values a ∈ Q over
which the fiber f−1(a) is reducible, Hilbert’s theorem asserts that Redf is the union
of finitely many value sets hi(Yi(Q)) of nontrivial maps hi : Yi → P1Q, i = 1, . . . , r.
However, determining which of the value sets hi(Yi(Q)) are infinite is far from known.

For polynomial maps f ∈ Q[x], determining the infinite value sets contributing to
Redf is a long standing open problem of special interest, firstly due to its relation
with reducibility of separated polynomials: for hi ∈ Q[x], the value set hi(Q) is
contained in Redf if and only if f(x)− hi(y) ∈ Q[x, y] is reducible. The reducibility
of such polynomials plays a key role in studying the rational points on components
of the associated curves f(x) = h(y) [4, 8, 50, 17] for h ∈ Q[y], a problem with a
wide range of applications e.g. to functional equations [52, 20, 48], dynamics [39, 26],
and complex analysis [51].

Secondly, the problem arises in arithmetic dynamics in the context of stability and
newly reducible values, cf. [7, §19],[10, 33]. Namely, it is unknown for which integers
m = mf ≥ 2 there exists (resp. exist infinitely many) a ∈ Q over which the m-th
iterate f ◦m of f is newly reducible, that is, the fiber of f ◦(m−1) over a is irreducible

1Equivalently it asserts the existence of infinitely many a ∈ Q such that F (a, x) ∈ Q[x] is
irreducible for a polynomial F (t, x) ∈ Q(t)[x] defining a curve birational to X over Q. This is also
equivalent to P1Q having the Hilbert property, a property of high interest in recent years [6, 11].
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2 JOACHIM KÖNIG AND DANNY NEFTIN

over Q, but the fiber of f ◦m over a is reducible over Q. Finally, the problem also
arises in the context of a prime number theorem in short intervals for function fields
[5] as the latter can be viewed as studying the irreducibility of a polynomial upon
changing only few of its coefficients, cf. [46].

Most known results concern indecomposable maps f , that is, maps that cannot
be written as the composition of two maps of degree > 1. For integral values and
indecomposable f ∈ Q[x] with2 deg f > 5, Redf (Z) is the union of a finite set with
the integers f(Q) ∩ Z in a single value set, by Fried, cf. [46]. In the more general
case of rational values, for indecomposable f ∈ Q[x] with deg f > 20, Redf (Q) is the
union of the single value set f(Q) with a finite set, by Müller [42] and Guralnick–
Shareshian [29], cf. Corollary 5.2 and Theorem 5.4.

This paper deals with decomposable polynomial maps f = f1 ◦ · · · ◦ fr when
the monodromy groups of fi, i = 1, . . . , r are nonsolvable. This gives the following
solution when f ∈ Q[x] has no composition factor of the form xn, or the (normalized)
Chebyshev polynomial Tn. Here, Tn ∈ Z[x] is the degree n polynomial satisfying
Tn(x+ 1/x) = xn + 1/xn for n ∈ N.

Theorem 1.1. Suppose f = f1 ◦ . . . ◦ fr for indecomposable fi ∈ Q[x], i = 1, . . . , r
of degree ≥ 5, none of which equals µ1 ◦ xn ◦ µ2 or µ1 ◦ Tn ◦ µ2, for n ∈ N and linear
µ1, µ2 ∈ C[x]. If deg f1 > 5, then Redf (Z) is the union of f1(Q)∩Z and a finite set.

If further deg f1 > 20, then Redf is the union of Redf1 and a finite set. In
particular, either Redf is the union of f1(Q) with a finite set, or f1 is as in Table 1.

A surprising part of Theorem 1.1 is that if the fiber of the first polynomial f1 is
irreducible over a, then the fibers of the rest of the compositions f1 ◦ · · · ◦ fi remain
irreducible for all but finitely many a ∈ Q. In particular for m > 1, it follows that
the iterate f ◦m is newly reducible only over finitely many values a ∈ Q. See Theorem
5.6 for the analogous result over other fields.

We further apply our methods to the Davenport–Lewis–Schinzel (DLS) problem
on reducibility of separated polynomials. This problem originates in the late 50’s
[38, 53, 12, 13] in view of the above relation to the curves f(x) = h(y). It seeks to
determine the polynomials f, h ∈ C[x]\C for which f(x)−h(y) ∈ C[x, y] is reducible.
A trivial case in which f(x) − h(y) is reducible is when f and h have a nontrivial
common left composition factor, that is, f = g ◦ f1, h = g ◦ h1 for g, f1, h1 ∈ C[x] \C
with deg g > 1. The problem is to find the nontrivial reducible cases.

In case at least one of f and h is indecomposable, the problem is solved by Fried
[19], who gives the possible ramification of f and h. The polynomials themselves are
then determined by Cassou-Noguès–Couveignes [9]. More recent progress is described
in [4, Theorem 3 and §3], [21, 24], and here as well the main difficulty is the remaining
case of decomposable polynomials.

2Moreover, by Dèbes and Fried [14], examples with deg f1 = 5 actually occur!
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Our methods give the following answer to the DLS problem when one avoids
composition factors of the form xn and Tn:

Theorem 1.2. Let f, h ∈ C[x] be nonconstant polynomials. Assume that f = f1 ◦
. . . ◦ fr for indecomposable fi ∈ C[x] of degree ≥ 5, none of which is µ1 ◦ xn ◦ µ2 or
µ1 ◦ Tn ◦ µ2, for n ∈ N and linear µ1, µ2 ∈ C[x]. Assume further that deg f1 > 31.
Then f(x)− h(y) ∈ C[x, y] is reducible if and only if h = f1 ◦ h′ for some h′ ∈ C[x].

Note that common composition factors of f and h necessarily factor through f1
since, for fi’s as above, the decomposition f = f1◦· · ·◦fr is unique up to composition
with linear polynomials by Ritt’s theorem, see Theorem 2.9. We note the degree
assumptions on f1 can be removed in both of the above theorems at the account of
a longer list of exceptions, cf. §5.3. However, different methods are required for both
of the above theorems when fi, i = 1, . . . , r are allowed to be the composition of xn

or Tn with linear polynomials, that is, when Mon(fi), i = 1, . . . , r are allowed to be
solvable. Moreover, in such cases Redf may consist of more than one infinite value
set even when the decomposition of f is unique, see Example 2.6.

The above two problems share a common ground, namely, they require determining
the maps h : Y → P1k, from Y of genus ≤ 1, whose fiber product with f is reducible.
The key step in doing so is reducing the problem to determining the genus ≤ 1 maps
whose fiber product with f1 is reducible, see §5.1. This relies on a combination of
Ritt’s theorem, group theoretic tools, and a new relation between normal subgroups
of the monodromy group of f with decompositions f = f1 ◦ · · · ◦ fr, see Lemma 3.5.

The main property of indecomposable polynomials used in the proof is that ei-
ther their monodromy groups are solvable or they are nonabelian almost simple by
Burnside’s theorem on doubly transitive groups. However, our strategy applies more
generally to compositions of indecomposable maps whose monodromy groups are
nonsolvable, but have the property that all their proper quotients are solvable. As
opposed to Müller’s finiteness results [44, 45] for indecomposable maps, for such
decomposable maps Redf may contain many infinite value sets. For the sake of
simplicity of this paper, this is carried out separately in [35] for integral values.

The classification of finite simple groups (CFSG) is used in the above reduction
process only for basic assertions regarding the outer automorphism group of a simple
group such as Schreir’s conjecture, and for the “further” part of Theorem 1.1 (in ap-
plying Theorem 2.3). The final step of classifying subcovers of the Galois closure of f1
is then carried out by applying the primitive monodromy classification theorems (and
hence the CFSG) for polynomials by Feit and Müller [42], and Guralnick–Shareshian
[29], see §5.2 and §5.3. In light of the further development of the classification of
primitive monodromy groups [49, 25, 1], the above results would hopefully extend to
rational functions, and to general maps under group theoretic restrictions on their
monodromy groups, cf. [36, §5.2].
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2. Preliminaries

2.1. Coverings. Let k be a field of characteristic 0, and k its algebraic closure.
An (irreducible branched) covering f : X → Y (of curves) over k is a morphism
of (smooth irreducible projective) curves defined over k. Note that as X may be
geometrically reducible (i.e., reducible over k), the morphism f×kk obtained by base
change from k to k may not be a covering over k. A covering h is called a subcover of
f if f = h◦h′ for some covering h′. A covering f defines a field extension k(X)/k(Y )
via the injection f ∗ : k(Y ) → k(X), h 7→ h ◦ f . Two coverings fi : Xi → Y ,
i = 1, 2 over k are called (k-)equivalent if there exists an isomorphism µ : X1 → X2

(over k) such that f1 ◦ µ = f2. Note that for two k-equivalent coverings, one has
f1(X1(k)) = f2(X2(k)) and hence we may consider the value set of a k-equivalence
class of coverings.

Recall that there is a correspondence between equivalence classes of coverings of
P1k and finite field extensions of k(t), up to k(t)-isomorphisms, cf. [15, Section 2.2].

In particular, letting f̃ : X̃ → P1k denote the covering corresponding to the Galois
closure Ω of k(X)/k(t), there is a correspondence between equivalence classes of

subcovers h : Y → P1k of f̃ and subgroups D ≤ A := Gal(Ω/k(t)). Namely, to
every such subcover the correspondence associates a subgroup D ≤ A (unique up
to conjugation) such that h is equivalent to a covering fD : X̃/D → P1k whose

composition with the natural projection X̃ → X̃/D is f̃ .
By the genus of X, we mean the genus of a geometrically irreducible component of

X. Note that since k/k is Galois, it is independent of the choice of the component.
The ramification type of a covering f : X → P1

k
at a point P ∈ P1

k
is defined to be

the multiset of ramification indices {ef (Q/P ) | Q ∈ f−1(P )}, and the ramification
type of f is the multiset of all ramification types over all branch points of f . The
ramification type of a geometrically irreducible covering f over k is the ramification
type of f ×k k.

2.2. Polynomials and Siegel functions. A polynomial covering f : P1 → P1 is a
covering which satisfies f−1(∞) = {∞} over k. In particular, on the affine line, it is
given by a polynomial. For polynomial coverings, Fried and MacRae [18] show that
an indecomposable polynomial over k is indecomposable over k. We shall therefore
call such a polynomial simply “indecomposable” without specifying the base field.
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Two polynomials f, g ∈ k[x] are called linearly related (resp. linearly related over k),
if there exist linear polynomials µ, ν ∈ k[x] (resp., ∈ k[x]) such that g = µ ◦ f ◦ ν.

A Siegel function is a covering f : X → P1k over a number field k, for which f−1(Ok)
has infinitely many k-rational points. Due to Siegel’s theorem, for such a function
one has X ∼= P1k and ∞ has at most two preimages over k. With a slight abuse of
notation, coverings with the latter property are also called Siegel functions.

2.3. Monodromy. Let f : X → P1k be a covering over k. Letting Ω denote the
Galois closure of k(X)/k(t), the arithmetic (resp. geometric) monodromy group A =
Monk(f) (resp.G = Monk(f)) of f is the Galois group Gal(Ω/k(t)) (resp. Gal(kΩ/k(t)))
equipped with its permutation action on A/A1, where A1 = Gal(Ω/k(X)). Note that
since k(t)/k(t) is Galois, so is k′(t)/k(t) for k′ = k∩Ω. Hence G�A. Also note that
fD is geometrically irreducible if and only if ΩD/k(t) is linearly disjoint from k(t),
or equivalently if ΩD ∩ k′(t) = k(t), that is, if D ·G = A.

The following theorem describes the structure of monodromy groups of polynomi-
als. This classical version is essentially due to Burnside and Schur, cf. Section 5.2
for the full classification result of Feit and Müller. Note that the CFSG is used in
the following theorem only to assert that proper quotients of an almost simple group
are solvable, an assertion also known as Schreier’s conjecture. Denote by soc(A) the
socle of A, that is, the product of minimal normal subgroups of A. When soc(A) is
abelian, we say A is an affine permutation group.

Theorem 2.1. Let f : P1k → P1k be a polynomial covering with monodromy group
A = Monk(f). Then A is either solvable or a 2-transitive nonabelian almost simple
group. In the former case, f is linearly related (over k) either to xn, or to a Chebyshev
polynomial, or an indecomposable degree 4 polynomial. In the latter case, soc(A) is
primitive and A/ soc(A) is solvable.

Proof. Due to results of Burnside, see [47], and Schur [54], any primitive group
containing a full cycle is known to be either solvable or 2-transitive; moreover, the
minimal normal subgroup of a nonaffine 2-transitive group is known to be simple
and primitive due to a theorem of Burnside [16, Theorem 7.2E]. The indecomposable
polynomial coverings f with affine monodromy group G, and in particular those with
solvable monodromy group, were essentially classified by Chisini and Ritt, see the
proof of [32, Satz 5] or [42]. Finally if A is almost simple, then A/ soc(A) is solvable by
Schreier’s conjecture, which follows from the classsifcation of finite simple groups. �

In case f is a Siegel function, Müller [43, Theorem 3.3] gives the following descrip-
tion of Mon(f). This version requires the CFSG only for Schreier’s conjecture and
the following bound on orders of elements in the outer automorphism group Out(S)
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of a nonabelian simple group S other than A5 and PSL2(7):

(2.1) o(Out(S)) <
#S

2o(S)2
,

where o(G) denotes the maximal order of an element in a group G.

Theorem 2.2. Let f : P1k → P1k be a indecomposable Siegel function with nonaffine
monodromy group A = Monk(f). Then A is either nonabelian almost simple, or
A ≤ (Aut(S)×Aut(S))o C2 contains S2 as a unique minimal normal subgroup for
a nonabelian simple group S. In particular, the proper quotients of A are solvable.

Proof. We note how the proof of [43, Theorem 3.3] adjusts to give this version without
relying on the CFSG. Assume A is not almost simple. As in addition A is not affine,
the remaining possibilities for A have product action, or regular normal subgroup
action, or diagonal action in the terminology of [43, §2]. Without invoking the CFSG,
[43, §3.4.1] shows that, for A of product action, one has S2 � A ≤ (U × U) o C2

where U is a primitive group of degree r which contains an r-cycle and has socle
S. Since A is nonaffine, S is nonabelian and Burnside’s theorem shows that U is a
2-transitive almost simple group, so that S is simple and U ≤ Aut(S), yielding the
desired conclusion in the product type case.

Without invoking the CFSG, [43, §3.5] shows that A cannot have a regular normal
subgroup: More precisely, it shows that in such case Amust be a subgroup ofHmoSm
equipped with a product action for H which is not 2-transitive, contradicting the
above conclusion in the product type case. Finally, [43, §3.6] shows that A cannot
have a diagonal action using the CFSG only when applying (2.1).

In total it follows that A has a unique minimal normal subgroup soc(A) = St for
a simple group S and t ∈ {1, 2}, and hence the quotient A/ soc(A) is a subgroup of
Out(S)t o St, t ≤ 2, which is solvable by Schreier’s conjecture. �

For coverings of genus at most 1 the following analogous assertion is shown in
Appendix A using the classification of monodromy groups and hence the CFSG.

Theorem 2.3. Suppose f : X → P1
k

is an indecomposable covering of genus gX ≤ 1
and nonaffine monodromy group G. Then G/ soc(G) is solvable.

2.4. Specializations. To a covering f : X → P1k, one associates an irreducible
polynomial F ∈ k(t)[x] such that the curve F (t, x) = 0 is birational to X. Further,
we replace F by a polynomial F ∈ k[t, x] by multiplying it with an element of k(t).
Note that after these operations, the resulting set of values t0 ∈ k for which F (t0, x)
is reducible differs from Redf (k) only in finitely many values.

We next recover a well known criterion for the reducibility of F (t0, x). Let Ω be the
splitting field of F over k(t), so that A = Gal(Ω/k(t)) is the arithmetic monodromy
group of f . A well known fact from algebraic number theory [34, Lemma 2], asserts
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that for every t0 ∈ k which is neither a root nor a pole of the discriminant δF ∈ k(t)
of F , the splitting field Ωt0 of F (t0, x) is Galois, and its Galois group is identified as
a permutation group with a subgroup D ≤ A, unique up to conjugation, known as
the decomposition group at t 7→ t0 ∈ k. Moreover, ΩD has a degree 1 place P over t0.
In particular, ΩD ∩ k(t) = k(t), so that the corresponding morphism fD : XD → P1k
is geometrically irreducible, and DG = A. The place P corresponds to a k-rational
point P ∈ XD(k) such that fD(P ) = t0. Since D and Gal(Ωt0/k) are isomorphic as
permutation groups, F (t0, x) is reducible if and only if D is intransitive. In total:

Proposition 2.4. Let f : X → P1k be a covering with arithmetic and geomertric
monodromy groups A and G, respectively. Let D = Dt0 be the decomposition group
at t 7→ t0, and fD : XD → P1k its corresponding covering. Then:

(1) t0 ∈ fD(XD(k)) and DG = A for all but finitely many t0 ∈ k;
(2) For all but finitely many t0 ∈ k, t0 ∈ Redf (k) if and only if D is intransitive.

Proposition 2.4 implies that Redf is the union of
⋃
D fD(XD(k)) with a finite set,

where D ≤ A runs over maximal intransitive subgroups with DG = A. If XD(k) is
infinite and k is a finitely generated field, Faltings’ theorem implies that gXD

≤ 1.
Similarly if k is a number field with ring of integers Ok and fD(XD(k))∩Ok is infinite,
then Siegel’s theorem implies that fD is a Siegel function. This is the step in which
the finite set of exceptions is no longer explicit; Computing it is in general hopeless
since the curves XD are arbitrary. We therefore have:

Corollary 2.5. Let f : X → P1k be a covering over a finitely generated field k with
arithmetic (resp. geometric) monodromy A (resp. G). Then Redf and

⋃
D fD(XD(k))

differ by a finite set, where D runs over maximal intransitive subgroups of A with
gXD
≤ 1 and DG = A.

Similarly, if k is a number field and Ok is its ring of integers, then Redf (Ok) and⋃
D (fD(XD(k)) ∩Ok) differ by a finite set, where D runs over maximal intransitive

subgroups of A such that DG = A and fD is a Siegel function.

Example 2.6. Let k := Q(e2πi/8), and f(x) := T4(x) ∈ k[x]. We will show that
(1) Redf is the union of f1(Q) ∪ h(Q) with a finite set, where f1(x) = T2(x) and
h(x) = −T4(x). Furthermore, (2) f1 is the the unique indecomposable subcover of
the natural projection f : P1k → P1k, x 7→ T4(x). Since f1 is of degree 2, it is Galois,
and hence h does not factor through f1. As pointed out in Section 1, this shows that
the nonsolvability assumption in Theorem 1.1 is necessary.

To show (1) and (2), first note that the Galois closure of f is the covering f̃ : X̃ →
P1k by X̃ ∼= P1k given by x 7→ (x + 1/x)4, so that f̃ = f ◦ (x + 1/x). The arithmetic
and geometric monodromy groups A and G of f are the dihedral group D4 of order
8 equipped with its standard degree 4 action. Let s be the automorphism of X̃ given
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by x 7→ 1/x, so that f is equivalent to the subcover fs : X̃/〈s〉 → P1k. We next
deduce (1) and (2) from:

Claim 2.7. h is equivalent to the covering f〈sr〉 : X̃/〈sr〉 → P1k.
By Corollary 2.5, it suffices to find the maximal intransitive subgroups D ≤ A for

which gXD
≤ 1 and DG = A. However, since X̃ is of genus 0 and G = A, the last

two conditions are immediate. Up to conjugacy the maximal intransitive subgroups
of D4 are 〈sr〉, and 〈s, r2〉. Since U := 〈s, r2〉 is the only intermediate subgroup
〈s〉 ≤ U ≤ D4, we deduce that fU is equivalent to f1, showing that (1) follows from
Claim 2.7. Since the only proper subgroup of D4 which contains 〈sr〉 is 〈sr, r2〉 and
it is not conjugate to U , (2) follows.

It remains to prove Claim 2.7. Note that the composition f̂ := T2 ◦ f̃ : X̃ → P1
k

is a Galois covering with arithmetic monodromy group D8 containing A = D4 as
a subgroup. Since sr ∈ A and s ∈ A are conjugate in D8, the coverings T2 ◦ f〈sr〉
and T2 ◦ f〈s〉 are equivalent in D8. However, since 〈sr〉 and 〈s〉 are not conjugate in
A, f〈sr〉 is not equivalent to f〈s〉. As two covering which are inequivalent but whose
compositions with T2 are equivalent, f〈sr〉 is equivalent to −f〈s〉: x 7→ −T4(x).

For an example over Q, see [22, §2],[23, Chp. 13, Ex. 1].

2.5. Decomposable coverings. Let f : Y → X and h : X → P1 be two coverings
over k of degrees m,n and monodromy groups U ≤ Sym(I), V ≤ Sym(J) with point
stabilizers U1, V1, respectively. Then the monodromy group A of h ◦ f is naturally
a subgroup of the wreath product U oJ V := UJ o V , where the semidirect product
action of V ≤ Sym(J) permutes the J-copies of U . The action of A is the natural
imprimitive degree mn action of U oJ V on I × J with blocks indexed by J .

We note two further properties of such monodromy groups A ≤ U oJ V . Letting
ΩX denote the Galois closure of k(X)/k(P1), the restriction map surjects onto V =
Gal(ΩX/k(P1)), that is, (1) the projection modulo UJ maps A onto V . Letting Ω
denote the Galois closure of k(Y )/k(P1) and A0 := A ∩ (UJ o Sym(J \ {0}) be the
stabilizer of a block 0 ∈ J , (2) A0 maps onto U under the projection to the 0-th
coordinate. We shall use the following assertions on decompositions of polynomials:

Lemma 2.8. Suppose f = u ◦ v for polynomial coverings u, v of degrees m,n, re-
spectively, then the kernel of the natural projection π from Monk(f) ≤ Sn o Sm to
Monk(u) ≤ Sm is nontrivial.

Proof. Letting ũ be the Galois closure of u, Abhyankar’s lemma implies that eũ(Q/∞) =
m for every Q ∈ ũ−1(∞). Since ef (∞/∞) = mn, it follows that f is not a subcover
of the Galois closure ũ of u, and hence the kernel of π is nontrivial. �

The uniquness of decompositions of a polynomial with nonsolvable composition
factors is given by Ritt’s theorems [52, 48]. Due to subsequent work of Fried and
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MacRae [18, Theorem 3.5], the linear polynomials in the following theorem may even
be assumed to be over k.

Theorem 2.9. Suppose f = f1◦· · ·◦fr for indecomposable fi ∈ k[x] with nonsolvable
monodromy group. Then for every decomposition f = g1 ◦ · · · ◦ gs into indecompos-
ables, one has s = r and gi = µi◦fi◦µi−1 for linear polynomials µi ∈ k[x], i = 1, . . . , r
with µ0 = µr = id.

2.6. Fiber products and pullbacks. Let f̃ : X̃ → Y be a Galois covering over
k with arithmetic monodromy group A. Let A1, H ≤ A be subgroups and fA1 :
X̃/A1 → Y and fH : X̃/H → Y the corresponding coverings, respectively. Setting
X := X̃/A1 and Z := X̃/H, we denote by X#Z the (normalization of the) fiber
product of fA1 and fH .

Remark 2.10. The irreducibility of X#Z is equivalent to the linear disjointness of the
function fields k(X) and k(Z) over k(Y ), which in turn is equivalent to the transitivity
of H on A/A1, that is, HA1 = A. When these conditions hold, the natural projection
X#Z → Y is equivalent to the covering fH∩A1 : X̃/(H ∩ A1)→ Y .

Lemma 2.11. Let f : X → Y and h : Z → Y be coverings with reducible fiber
product. Then f = f0 ◦ f1 where f0 is a subcover of the Galois closure h̃ whose fiber
product with h is reducible.

Proof. Let g : Z → Y be a common Galois closure for f and h, let A be its
(arithmetic) monodromy group, and assume f ∼ gU , h ∼ gV , and h̃ ∼ gN for
U, V,N ≤ A with N = coreA(V )�A. Since the fiber product of f and h is reducible,
UV 6= A. Since N � A, the set UN is a group, and as U ≤ UN , f factors through
f0 := gUN : Z/(UN) → Y . Since UN ≤ UV < A, we have deg f0 > 1. Since
UN · V = UV < A, the fiber product of f0 and h is reducible. �

The pullback of f along h is the natural projection fh : W → Z from W := X#Z.

Lemma 2.12. Let f : X → Y be a covering with Galois closure f̃ : X̃ → Y , and
h : Z → Y a subcover of f̃ whose fiber product with f is irreducible. Then the Galois
closure of the pullback fh is equivalent to the projection X̃ → Z.

Proof. First replace h by an equivalent subcover fH : X̃/H → Y for some H ≤
Monk(f). Since X#YZ is irreducible, H is transitive and fh is equivalent to the
projection X̃/(H ∩ G1) → X̃/H by Remark 2.10, where G1 ≤ Monk(f) is a point
stabilizer. Moreover, the transitivity of H implies that⋂

x∈H

(H ∩G1)
x ⊆

⋂
x∈H

Hx =
⋂
g∈G

Hg = 1.

Thus the action of H on H/H ∩G1 is faithful, so that there are no nontrivial Galois
covers between X̃ → X̃/H and fh : X̃/(H ∩G1)→ X̃/H. �
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Remark 2.13. Assume that W = X#Z is irreducible, and let f̃h : W̃ → Z be the
Galois closure of fh, and Γ = Monk(fh). Then we may identify Γ with a (transitive)
subgroup of A via the following embedding. Since k(W ) is the compositum of k(X)
and k(Z) by Remark 2.10, the Galois closure ΩW of k(W )/k(Z) is the compositum
of the Galois closure ΩX of k(X)/k(Y ) with k(Z). Thus Γ = Gal(ΩW/k(Z)) is
isomorphic, via restriction, to Gal(ΩX/ΩX ∩ k(Z)) ≤ A.

3. Normal and transitive subgroups of imprimitive groups

Throughout this section, we consider subgroups G of the wreath product U oJ V ,
for finite permutation groups U and V , with V acting on a set J .

3.1. Normal subgroups. We start by describing the minimal normal subgroups of
G. The following is essentially in [3]:

Lemma 3.1. Let G ≤ U oJ V be a subgroup whose natural projection to V is onto,
whose block stabilizer projects onto U , and assume V acts transitively on J . Assume
U is primitive with a unique minimal normal subgroup soc(U) ∼= LI for a nonabelian
simple group L, and K := G ∩ UJ is nontrivial. Then G acts transitively on a
partition O1, . . . , Or of I × J such that K ∩ LOj ∼= L, j = 1, . . . , r and

soc(K) = K ∩ soc(U)J ∼= (K ∩ LO1)× · · · × (K ∩ LOr).

The proof relies on the following observations and lemma:

Remark 3.2. Suppose K ≤ UJ and V is a group of outer automorphisms of K acting
transitively by permuting J . Then (a) the images of projections πj : K → U to
the j-th coordinate, for j ∈ J , are all isomorphic; and (b) if furthermore K 6= 1,
πj(K)�U , and U has a unique minimal normal subgroup, then πj(K) ⊇ soc(U) for
all j ∈ J .

To see (a), let vj ∈ V be an automorphism which sends j to 1, and observe that
π1(K) = π1(vj(K)) ∼= πj(K) for all j ∈ J . To see (b), note that since soc(U) is
the unique minimal normal subgroup of U and πj(K) � U , the images πj(K), j ∈ J
either contain soc(U) or are all {1}. However, the latter does not occur since K 6= 1.

The following lemma is a version of the well known Goursat lemma:

Lemma 3.3. [3, (1.4)] Let L be a finite nonabelian simple group, I a finite set, and
K a subgroup of LI which surjects onto L under each projection πi : K → L to the
i-th component for all i ∈ I. Then K decomposes as (K ∩ LO1) × · · · × (K ∩ LOr)
where O1, . . . , Or is a partition of I, and K ∩ LOj ∼= L for all j = 1, . . . , r.

Proof of Lemma 3.1. We first show that the projection of K ≤ UJ to the j-th com-
ponent contains soc(U) = LI , j ∈ J . First G acts transitively on J , so that the
assumption of Remark 3.2.a) holds. Since the projection πj : G0 → U from the
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j-th block stabilizer G0 to the j-th copy of U is onto, and since K � G0, we have
πj(K) � U , j ∈ J . As in addition U has a unique (nonabelian) minimal normal
subgroup, and K 6= 1, the conditions of Remark 3.2.(b) also hold. Thus, the remark
implies that soc(U) = LI is a minimal normal subgroup of πj(K) ⊇ LI , j ∈ J . In
particular, K0 := K ∩ soc(U)J = K ∩ LI×J surjects onto each copy of L, and hence
K0 = (K ∩LO1)×· · ·× (K ∩LOr) with K ∩LOk ∼= L, k = 1, . . . , r for some partition
O1, . . . , Or of I × J , by Lemma 3.3.

Secondly, we show G ≤ U oJV acts transitively on I×J via conjugation of the I×J-
indexed copies of L in soc(U)J . Since soc(U) is a normal subgroup of the primitive
group U , it acts transitively on I [16, Theorem 1.6A]. As K0 projects onto soc(U),
this implies that G acts transitively on each block I × {j}, j ∈ J . Furthermore, G
acts transitively on the blocks J , yielding its transitivity on I × J . It follows that G
acts transitively on the copies of L in K0, and hence that G acts transitively on the
partition O1, . . . , Or of I × J .

It remains to note that soc(K) in fact equals K0: Since K0 = K ∩ soc(U)J is
normal in K and is a direct product of isomorphic nonabelian simple groups which
are permuted transitively by G, K0 is contained in soc(K). To show equality, it
suffices to show that a normal subgroup C �K which is disjoint from K0 is trivial.
Indeed, such C centralizes K0, and hence πj(C) centralizers soc(U) = LI ≤ πj(K0),
j ∈ J . Since the centralizer of soc(U) in U is trivial, πj(C) = 1, j ∈ J and hence
C = 1, as needed. �

In particular, in the setting of Lemma 3.1 one has:

Corollary 3.4. The socle soc(K) is a minimal normal subgroup of G.

Proof. Let N � G be a normal subgroup. As in Lemma 3.3, decompose soc(K) as∏r
i=1 soc(K) ∩ LOi where O1, . . . , Or is a partition of I × J , and soc(K) ∩ LOi ∼= L.

Since N ∩ soc(K) is normal in soc(K), it decomposes as
∏

i∈RN ∩LOi , where R is a
subset of {1, . . . , r}. Since G acts transitively on I×J by Lemma 3.1, the normality
of N in G implies that R = {1, . . . , r} or ∅, and hence N ∩soc(K) = soc(K) or 1. �

3.2. Normal subgroups and decompositions. The following lemma relates nor-
mal subgroups of an imprimitive group G ≤ U o V to other partitions of its action.

Lemma 3.5. Let G ≤ U oJ V be transitive, where U is primitive with a unique
nonabelian minimal normal subgroup3, and G surjects onto V . Let G1 ≤ G be a
point stabilizer, and G1 ≤ G0 ≤ G a block stabilizer. Let K :=

⋂
g∈GG

g
0 be the block

kernel, and assume K 6= 1.
Then every minimal normal subgroup N of G which is disjoint from K gives rise

to a proper subgroup G1N of G0N , with neither of G1N and G0 containing the other.

3In fact U has a unique minimal normal subgroup by Aschbacher–O’Nan–Scott [27, §9].
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G0N ≤ G G1N

G0 G1

Proof. To show that G1N 6= G0N , it suffices to show that N ′ := N ∩G0 acts trivially
on G0/G1, since then (N ∩G0)G1 = N ′G1 6= G0, and hence G0 6≤ G1N .

Let K0 := soc(K), and let M be the kernel of the action of K0×N ′ on G0/G1, so
that (K0 × N ′)/M embeds into U as a (transitive) normal subgroup. It remains to
show that M contains N ′. However, since U is nonaffine and K and hence K0 are
nontrivial, soc(U) and hence also K0 are nontrivial powers of a nonabelian simple
group. Thus, Goursat’s lemma [37, Corollary 1.4] implies that a normal subgroup
M of K0 ×N ′ decomposes as M = (M ∩K0)× (M ∩N ′). In particular, the image
K0/(M ∩K0)×N ′/(M ∩N ′) of the action is a normal subgroup of U . Since K0 6= 1,
it acts nontrivially on each block, and hence K0/(M ∩K0) is nontrivial. As U has a
unique minimal normal subgroup and K0�G, this shows that K0/(M ∩K0) contains
soc(U) as in Remark 3.2. Moreover, since U has a unique minimal normal subgroup,
this forces N ′/(M ∩N ′) = 1, as desired.

It remains to note that G1N is not contained in G0, since by assumption

1 = N ∩K = N ∩
⋂
g∈G

Gg
0 =

⋂
g∈G

(N ∩G0)
g

while K 6= 1, giving N 6⊆ G0. �

Note that the conclusion of Lemma 3.5 yields a refinement G > G0N > G1N > G1

of the inclusionG > G1 which is essentially different fromG > G0 > G1 (since neither
of G1N and any conjugate of G0 contain the other).

If G is assumed to be the monodromy group of a polynomial map f : P1k → P1
k,

then the conclusion gives two essentially different decompositions of f , yielding:

Corollary 3.6. Let k be a field of characteristic 0, and fi ∈ k[x], i = 1, . . . , r be
indecomposable polynomials with nonsolvable monodromy. Let A be the arithmetic
monodromy group of f = f1 ◦ · · · ◦ fr, and K the kernel of the natural projection
A→ Monk(f1 ◦ · · · ◦ fr−1). Then soc(A) = soc(K).

Remark 3.7. Furthermore, we show that soc(K) is the unique minimal normal sub-
group of every transitive subgroup B ≤ A containing soc(K).

Proof of Corollary 3.6 and Remark 3.7. First note that soc(K) is a minimal normal
subgroup of A by Lemma 3.4. Ritt’s theorem 2.9 implies that the decomposition of
f into indecomposables is unique up to composition with linear polynomials, so that
soc(K) is the unique minimal normal subgroup of A by Lemma 3.5. In particular,
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soc(K) has a trivial centralizer in A, forcing soc(B) = soc(K). Finally, since B
is transitive, we also deduce that soc(K) is a minimal normal subgroup of B from
Corollary 3.4 (applied with U replaced by a subgroup of it, namely, the image of the
action of a block stabilizer of B on a block). �

3.3. Pulling back along covers with affine monodromy. The following lemma
is the base of our induction process in Proposition 4.1 below.

Lemma 3.8. Let U ≤ G be a subgroup such that the action on G/U is affine.
Suppose G = H0 > H1 > · · · > Hr =: H is a chain of maximal subgroups such
that 1) the action Γi ≤ Sym(Hi−1/Hi) of Hi−1 on Hi−1/Hi is almost simple with
primitive socle for i = 1, . . . , r, and 2) the block kernels

⋂
g∈GH

g
i , i = 1, . . . , r are

pairwise distinct. Then Hi−1 ∩ U is transitive on Hi−1/Hi, i = 1, . . . , r and 1) and
2) hold with Hi replaced by Hi ∩ U for i = 0, . . . , r.

In terms of coverings this gives the following corollary. As we shall see in Section
5.3, its conditions hold when the coverings are polynomial.

Corollary 3.9. Let fi : Xi → Xi−1, i = 1, . . . , r be coverings such that 1) Mon(fi)
are nonabelian almost simple with primitive socle, and 2) gi = f1 ◦ · · · fi does not
factor through the Galois closure g̃i−1 of gi−1 for i = 1, . . . , r. Let h be a subcover of
g̃r : X̃ → P1k that has an affine monodromy group. Let g′i be the pullback of gi along
h, and define f ′i iteratively via g′i = g′i−1 ◦ f ′i , i = 1, . . . , r. Then g′i is irreducible, and
1) and 2) above hold with gi replaced by g′i and fi by f ′i .

Proof. Pick G =: H0 > H1 > · · · > Hr = H (resp. U) so that fi (resp. h) is
equivalent to the projection X̃/Hi−1 → X̃/Hi, i = 1, . . . , r (resp. X̃/U → X0). As
the conditions of Lemma 3.8 hold, the lemma implies that Hi ∩ U is transitive on
Hi−1/Hi so that the pullback g′i : X̃/(Hi ∩ U)→ X̃/U of gi along h is irreducible of
the same degree as gi, i = 1, . . . , r. The second assertion of the corollary now follows
directly from the second assertion of Lemma 3.8. �

The proof of Lemma 3.8 relies on the following observation.

Lemma 3.10. In the setup of Lemma 3.8, for every N / G, the group U ∩N must
contain all nonabelian composition factors of N .

Proof. First note that U contains every nonabelian composition factor of G, including
multiplicities. Indeed, since U has an elementary abelian complement, it contains ev-
ery nonabelian composition factor of G. Applying this to the quotient G/N (resp. G)
shows that its nonabelian composition factors are the same as those of U/(N ∩ U)
(resp. U). Since the composition factors of U are those of N ∩ U combined with
those of U/(N ∩ U) ∼= UN/N ≤ G/N , this implies that the nonabelian composition
factors of N ∩ U and those of N are the same, as desired. �
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Proof of Lemma 3.8. We first show transitivity by induction on r. For the induction
base r = 0, the assertion holds trivially. Set Ki :=

⋂
g∈GH

g
i , and note that Ki 6= 1,

i = 1, . . . , r. By induction the action of UKr−1/Kr−1 on a block G/Hr−1 is transitive.
It therefore remains to show that U ∩ Hr−1 is transitive in its action on a given
block Hr−1/Hr. Since soc(Kr−1) / G, Lemma 3.10 shows that U must contain every
nonabelian composition factor of soc(Kr−1). Let Γ denote the image of the action
ψ : Hr−1 → Sym(Hr−1/Hr). Since Γ is nonabelian almost simple and K 6= 1,
Remark 3.2 implies that the projection ψ(soc(Kr−1)) to any block is a nontrivial
normal subgroup of Γ. Since Γ is primitive, ψ(soc(Kr−1)) and hence U ∩ Hr−1 is
transitive on Hr−1/Hr, completing the induction.

To show that 1) and 2) hold, identify the image Γ′i ≤ Sym((Hi−1 ∩ U)/(Hi ∩ U))
of the action of Hi−1 ∩ U with a subgroup of Γi. Then Γ′i is almost simple with the
same socle soc(Γi), so that 1) holds. Since soc(Ki) is a direct product of nonabelian
simple groups by Lemma 3.1 and its composition factors are contained in U as above,
soc(Ki) is contained in the kernel

⋂
u∈U(Hi∩U)u of the action of U on cosets of Hi∩U ,

i = 1, . . . , r, so that these kernels are pairwise disjoint. �

Remark 3.11. In the setup of Corollary 3.9, we may identify Monk(g
′
i) as a subgroup

of Monk(gi) as in Remark 2.13. Then the kernel of Monk(g
′
i)→ Monk(g

′
i−1) contains

the socle of the kernel of Monk(gi)→ Monk(gi−1). Indeed, as the groups U and Hi,
i = 1, . . . , r in the proof of the corollary satisfy all of the hypotheses of Lemma 3.8,
the final step of the proof of the lemma yields the desired conclusion.

4. The main tool

The following proposition establishes a machinery to compare low genus subcovers
of the Galois closure f̃ : X̃ → P1k of polynomial coverings f : P1k → P1k, with the
composition factors of f itself. In this section, we fix a base field k of characteristic
0. All occurring coverings are to be understood as coverings over k. Consequently,
the term “monodromy group” always refers to the arithmetic monodromy group.

Proposition 4.1. Let f = f1 ◦ · · · ◦fr for indecomposable polynomials fi ∈ k[x] with
nonsolvable monodromy group. Let fV = fU ◦h′ be a subcover of the Galois closure of
f such that fU is a composition of coverings with affine monodromy groups while h′

is indecomposable whose monodromy group Γ is nonsolvable with a solvable quotient
Γ/ soc(Γ). Then there exists a subcover h of fV with the same Galois closure as f1.

Proof. As usual denote by fC : X̃/C → P1k the subcover corresponding to C ≤
Monk(f). First note that the (nonsolvable) monodromy groups of f1, . . . , fr have
primitive nonabelian simple socles by Theorem 2.1. Moreover, gi+1 := f1 ◦ · · · ◦ fi+1

is not a subcover of the Galois closure of gi by Lemma 2.8, or equivalently the kernel
Ki of the projection Monk(gi)→ Monk(gi−1) is nontrivial, for i = 1, . . . , r − 1.
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We first show that the pullback f ′ of f along fU has similar properties to the above
properties of f . First note that in view of our assumptions on fU and fi, i = 1, . . . , r,
U is transitive by Lemma 3.8. Thus, letting G1 ≤ Monk(f) be a point stabilizer,
f ′ is equivalent to the projection X̃/(U ∩ G1) → X̃/U by Remark 2.10, and f ′ has
the same Galois closure X̃ as f by Lemma 2.12. As the socles of Γi := Monk(fi)
are primitive and nonabelian simple, Corollary 3.9 implies that f ′ decomposes as
f ′1 ◦ · · · ◦ f ′r for indecomposable f ′i , i = 1, . . . , r with almost simple monodromy
groups. Since g′i := f ′1 ◦ · · · ◦ f ′i is the pullback of gi along fU , we shall henceforth
identify Monk(g

′
i) as a subgroup of Monk(gi) for all i, as in Remark 2.13. Moreover,

Remark 3.11 then shows that the kernel K ′i of the projection Monk(g
′
i)→ Monk(g

′
i−1)

contains soc(Ki) and in particular is nontrivial.

Since f ′ has Galois closure f̃ ′ : X̃ → X̃/U as shown above, we may regard h′ as a
subcover of the Galois closure of f ′. Suppose 1 ≤ s ≤ r is minimal for which h′ is a
subcover of the Galois closure of g′s. We claim that s = 1.

Since Monk(g
′
i) is a transitive subgroup of Monk(gi) and since soc(Ki) ≤ Monk(g

′
i)

as above, Corollary 3.6 and Remark 3.7 imply that soc(Ki) is the unique mini-
mal normal subgroup of Monk(g

′
i). Letting φ : A → Γ be the natural projec-

tion, it follows that either soc(Ks) ⊆ kerφ or kerφ = 1. In the former case,
since Ks/ soc(Ks) ≤ (Γs/ soc(Γs))

deg gs−1 by Lemma 3.1, Ks/ soc(Ks) is solvable by
Schreier’s conjecture, and hence so is K ′s/ soc(Ks) and φ(K ′s). Since Γ is primitive
(as h′ is indecomposable) and soc(Γ) is nonabelian, Γ has no nontrivial solvable nor-
mal subgroups by Aschbacher–O’Nan–Scott [27, §11]. Thus φ(K ′s) = 1 and h′ is a
subcover of the Galois closure of g′s−1, contradicting the minimality of s.

Henceforth, we may assume kerφ = 1, that is, the Galois closure of h′ is the same
as that of g′s. Since Γ/ soc(Γ) is solvable, and Monk(g

′
s−1) is a nonsolvable quotient

of Monk(g
′
s)/ soc(Ks) for s > 1, the claim follows. Note that as Mon(f ′1) is almost

simple, the Galois closure of h′ in fact coincides with that of f ′1.

Let f̃1 : X̃1 → P1 be the Galois closure of f1 and φ1 : Mon(f) → Mon(f1) the
natural projection. The subcover h : X̃1/φ1(V )→ X̃1/Mon(f1) of the Galois closure
of f1 is then equivalent to X̃/(ker(φ1)·V )→ X̃/Mon(f), and hence is also a subcover
of fV : X̃/V → X̃/Mon(f). Moreover, since φ1(V ) has trivial core in Mon(f ′1) and
hence in Mon(f1), the Galois closure of h is the same as that of f1. �

Note that the only facts about the polynomials f1, . . . , fr used in the proof are:
1) Monk(fi) is almost simple with primitive socle; 2) f1 ◦ · · · ◦ fr has a unique
decomposition up to composition with linear polynomials (Theorem 2.9); and 3)
gi+1 = f1 ◦ · · · ◦ fi+1 does not factor through the Galois closure of gi. Thus, one may
replace f1, . . . , fr in the proposition by arbitrary coverings satisfying 1)-3).



16 JOACHIM KÖNIG AND DANNY NEFTIN

5. Proof of Theorems 1.1 and 1.2

5.1. Reductions. In this section we apply Proposition 4.1 to reduce Theorems 1.1
and 1.2 to assertions regarding merely the first composition factor f1. Throughout
this section k is finitely generated. For a number field k, let Ok be its ring of integers.

Corollary 5.1. Suppose f = f1 ◦ · · · ◦ fr ∈ k[x] for indecomposable polynomials
fi, i = 1, . . . , r with nonsolvable monodromy groups over a number field k. Then
Redf (Ok) is contained in the union of a finite set with

⋃
h(h(k)∩Ok), where h runs

over Siegel functions with the same Galois closure as f1.

Proof. Let f̃ : X̃ → P1k be the Galois closure of f over k, and A its arithmetic
monodromy group. By Corollary 2.5, Redf is the union of a finite set with

⋃
D fD(k),

where D ≤ A runs over maximal intransitive subgroups satisfying D ·Monk(f) = A,

and fD is a Siegel function equivalent to the projection fD : X̃/D → P1k.
Since such D is intransitive, Corollary 3.9 implies that fD is not a composition of

coverings with affine monodromy. Thus, fD has a minimal subcover fV : X̃/V → P1
k,

D ≤ V ≤ A with decomposition fV = fU ◦h′, V ≤ U ≤ A, such that fU : X̃/U → P1
k

is a composition of Siegel functions with affine monodromy and an indecomposable
Siegel function h′ : X̃/V → X̃/U with nonaffine (hence nonsolvable) monodromy.

Proposition 4.1 then implies that there exists a subcover h of fV with the same
Galois closure as f1. Since fD is a Siegel function, so is h. The claim now follows
since clearly fD(k) ⊆ h(k). �

Corollary 5.2. Let f = f1 ◦ · · · ◦ fr for indecomposable fi ∈ k[x], i = 1, . . . , r
with nonsolvable monodromy groups, such that the Galois closure of f1 is of genus
> 1. Then Redf is contained in the union of a finite set and

⋃
h h(X(k)), where

h : X → P1k runs over coverings of genus gX ≤ 1 with the same Galois closure as f1.

Proof. The proof is similar to that of Corollary 5.1 but applies Proposition 4.1 over
k. Letting f̃ : X̃ → P1k, f̃k : X̃k → P1

k
, A and G, be the Galois closures of f over

k and k, and arithmetic and geometric mondromy groups of f , respectively. Let
fD : X̃/D → P1k be a genus ≤ 1 subcover of f̃ for maximal intransitive D ≤ A
satisfying D ·G = A.

The subgroup C := D ∩G is also intransitive, so that the subcover fC of f̃k is not
a composition of coverings with affine monodromy. Thus, fC has a minimal subcover
fV : X̃k/V → P1

k
, C ≤ V ≤ G with decomposition fV = fU ◦ h′, V ≤ U ≤ G,

such that fU : X̃k/U → P1
k

is a composition of coverings with affine monodromy,

and h′ : X̃k/V → X̃k/U is an indecomposable covering with nonaffine (hence non-

solvable) monodromy group. Note that X̃k/U is of genus 0, since otherwise h′ is
a covering between genus 1 curves, hence with abelian monodromy [56, Theorem
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4.10(c)], contradicting the assumption that its monodromy is nonaffine. Theorem
2.3 then implies that the proper quotients of Monk(h

′) are solvable. Thus, the con-
ditions of Proposition 4.1 hold over k.

Proposition 4.1 then implies that there exists a subcover of fV with the same
Galois closure as f1. Letting π : A → Γ1 be the projection to Γ1 := Monk(f1) and
noting that Γ1 is nonabelian almost simple by Theorem 2.1, it follows that π(V )
and hence π(C) does not contain soc(Γ1). We claim that π(D) does not contain
soc(Γ1) and hence the natural projection h : X̃/(kerπ ·D)→ P1k has the same Galois
closure as f1. To see this, assume on the contrary π(D) contains soc(Γ1) and hence
π(D) ≤ Γ1 is almost simple with the same socle. Note that C �D since G�A, and
hence π(C)�π(D). Since π(D) is almost simple and π(C) does not contain soc(Γ1),
this implies π(C) = 1. However, the latter contradicts the assumption that f1 has
Galois closure of genus > 1, proving the claim.

Since h is a subcover of fD, it follows that fD(X̃/D(k)) ⊆ h(X(k)), where X :=
X̃/(kerπ ·D). Thus Corollary 2.5 implies that Redf is contained in the union of a
finite set with

⋃
h h(X(k)), where h : X → P1k runs over coverings of genus gX ≤ 1

with the same Galois closure as f1. �

Corollary 5.3. Let f = f1◦· · ·◦fr be the composition of indecomposable polynomials
fi ∈ C[x] with nonsolvable monodromy group. Assume f(x) − h(y) ∈ C[x, y] is
reducible for nonlinear h ∈ C[y]. Then h = h1 ◦ g for g, h1 ∈ C[x] such that h1 has
the same Galois closure as f1.

Proof. The reducibility of f(x) − h(y) ∈ C[x, y] implies the reducibility of the nor-
malization of the curve defined by f(x)− h(y) = 0. This curve is (the normalization
of) the fiber product of the maps f : P1C → P1C and h : P1C → P1C. By Lemma 2.11, we

may replace h by a common polynomial subcover h4 of h and of the Galois closure f̃ ,
whose fiber product with f is still reducible. It follows that h4 is not a composition
of polynomials with affine monodromy groups by Corollary 3.9.

We may therefore pick a minimal polynomial subcover h2 ◦ h3 of h4 which is
not a composition of polynomials with affine monodromy groups, so that h2 is a
composition of polynomials with affine monodromy groups, and h3 is indecomposable
and Γ := MonC(h2) is nonaffine. As Γ is nonaffine, Theorem 2.1 implies that it is
nonabelian almost simple, and in particular Γ/ soc(Γ) is solvable. We may therefore
apply Proposition 4.1 to deduce that h2 ◦ h3 has a polynomial subcover h1 with the
same Galois closure as f1. �

5.2. A classification theorem. The combination of [42] and [29, §1.2] gives:

Theorem 5.4. Let f : P1
k
→ P1

k
be an indecomposable polynomial covering over k of

degree > 20, and f̃ : X̃ → P1 its Galois closure. For every indecomposable subcover
h : Y → P1 with Galois closure f̃ and genus gY ≤ 1, one of the following holds:
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Table 1. Ramification types of polynomial maps P1
k
→ P1

k
of degree

` > 20 and monodromy group A` or S` for which the genus of the
quotient by a 2-set stabilizer is 0. Here a ∈ {1, . . . , `−1} is odd, (a, `) =
1, and in each type ` satisfies the necessary congruence conditions to
make all exponents integral.

[`], [a, `− a],
[
1`−2, 2

]
[`], [13, 2(`−3)/2], [1, 2(`−1)/2],

[
1`−2, 2

]
[`], [12, 2(`−2)/2] twice,

[
1`−2, 2

]
[`],
[
13, 2(`−3)/2] , [2(`−3)/2, 3]

[`],
[
12, 2(`−2)/2] , [1, 2(`−4)/2, 3]

[`],
[
1, 2(`−1)/2] , [12, 2(`−5)/2, 3]

[`],
[
13, 2(`−3)/2] , [1, 2(`−5)/2, 4]

[`],
[
12, 2(`−2)/2] , [12, 2(`−6)/2, 4]

[`],
[
1, 2(`−1)/2] , [13, 2(`−7)/2, 4]

(1) h is equivalent to f .
(2) f is one of the nine families of polynomials whose ramification is given in

Table 1 with monodromy group G = A` or S`; and h is the genus 0 covering
X̃/G2 → P1 where G2 is the stabilizer of a set of cardinality 2.

(3) The monodromy group of f is either PΓL3(4) or PSL5(2), in their natural
action of degree 21 and 31, resp. In each case, there is only one possible
ramification type for f , and exactly one more subcover h of genus ≤ 1. 4

Remark 5.5. 1) Note that for polynomials of degree 10 ≤ deg f ≤ 20 the correspond-
ing subcovers h are also listed in [42] and [29, Theorem A.4.1].
2) In Case (1), either G = An, Sn or M23. Letting A = Monk(f), one has A = G in
case (3) or if G = M23 since in these cases the symmetric normalizer of G is G.
3) The only groups in Theorem 5.4 which appear as the monodromy group of a poly-
nomial over Q are alternating and symmetric.

5.3. Deducing the theorems. We first deduce the first assertion of Theorem 1.1
from Corollary 5.1 by applying the classification of Siegel functions:

Proof of Theorem 1.1 for integral values. Note that since f1, . . . , fr are of degree ≥ 5
and are not linearly related to xn or Chebyshev, MonQ(fi), i = 1, . . . , r are nonabelian

4More precisely, h is of genus 0 and corresponds to the image of the point stabilizer under the
graph automorphism. Explicit equations for f and h are given in [9].
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almost simple by Theorem 2.1. Thus, Corollary 5.1 implies that Redf (Z) is contained
in the union of a finite set with

⋃
h(h(Q) ∩ Z), where h runs over Siegel functions

with the same Galois closure as f1. To show that equality holds, it suffices to show
that h(Q) ∩ Z is contained in Redf1(Z) for such h.

As f1(Q) ∩ Z ⊆ Redf1(Z), it suffices to consider Siegel functions h arising in a
different monodromy action of Γ := MonQ(f1), not equivalent to that of f1. Since
this action may be assumed minimally nonsolvable and Γ is almost simple, this
means that either Γ must induce a Siegel function in a second action permutation-
equivalent to that of MonQ(f1); or some subgroup between Γ and its socle must
induce a Siegel function in a different primitive action. From the classification of
primitive monodromy groups of Siegel functions in [43] (in particular Theorems 4.8
and 4.9), one extracts using a computer check that the first scenario happens only for
Monk(f1) ∈ {PSL2(11),PSL3(2),PSL3(3),PSL4(2),PΓL3(4),PSL5(2)}, whereas the
second one only happens for Monk(f1) ∈ {A5, S5,PSL3(2),PΓL2(9), M11,PSL4(2)}.
Out of those possibilities, only the polynomials with monodromy group S5 and
PΓL2(9) can be defined over Q (Remark 5.5), and for the latter group the Siegel
function h does not have two poles of the same order, and so is not a Siegel function
over Q, cf. e.g. [43, §4.4]. �

Note that by invoking [43] over a general number field k instead, the same proof
shows that Redf (Ok) is the union of Redf1(Ok) and a finite set if one assumes k is a
number field and merely5 that deg f1 > 15.

The rest of the assertions of Theorem 1.1 follow from the following theorem which
itself follows from Corollary 5.2 and Theorem 5.4.

Theorem 5.6. Let k be finitely generated, and f = f1 ◦ · · · ◦ fr for indecomposable
fi ∈ k[x] of degree ≥ 5, none of which is µ ◦xn ◦ ν or µ ◦Tn ◦ ν for linear µ, ν ∈ k[x].
If deg(f1) > 20, then Redf is the union of Redf1 and a finite set.

In particular, either (1) Redf is the union of f1(k) and a finite set, or (2) there
exists (a single) f ′1 ∈ k(x) such that Redf is the union of f1(k) ∪ f ′1(k) and a finite
set. In the latter case, either the ramification of f1 is as in Table 1, or k 6= Q and
f1 is one of the two cases in Theorem 5.4.(3).

Proof. First note that Monk(fi), i = 1, . . . , r are nonsolvable by Theorem 2.1. Since
deg f1 > 20 and Monk(f1) is nonsolvable, the Galois closure of f1 is of genus > 1,
e.g. by [30, Proposition 2.4]. Thus Corollary 5.2 implies that Redf is contained in
the union of a finite set and

⋃
h h(X(k)), where h : X → P1k runs over genus ≤ 1

subcovers of the Galois closure of f1. To show that equality holds, it suffices to
show that h(X(k)) is contained in Redf1 for all such h. Note that A := Monk(f1) is

5Here 15 is the degree of the action of PSL4(2) from the second list of groups in the above proof.
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nonabelian almost simple by Theorem 2.1 since f1 is of degree ≥ 5 and is not linearly
related to xn or Chebyshev.

By Theorem 5.4 and Remark 5.5, the only possible nonsolvable geometric mon-
odromy groups G = Monk(f1) for indecomposable f1 of degree > 20, which are
nonalternating and nonsymmetric, are PΓL3(4),M23 and PSL5(2). In these cases
A = G and k 6= Q by Remark 5.5.(2)-(3). Moreover, the Galois closure of the only
polynomial covering with monodromy group M23 has no other genus ≤ 1 equivalence
class of subcovers, so in this case (1) holds. For PΓL3(4) and PSL5(2), the Galois
closures of the corresponding polynomials have only one other equivalence class of
subcovers of genus ≤ 1, and its stabilizer is intransitive, whence h(X(k)) ⊆ Redf1
and (2) holds. Note that these cases do not occur over Q as well by Remark 5.5.

Henceforth, we may assume A = An or Sn in their natural action. We may assume
h is minimal with the same Galois closure as f1, and that it is not equivalent to f1.
Let D ≤ A be its stabilizer, and set C := D ∩ G. By [41, Theorem 5.3]6, either
C ≥ An−1 or C  An−2 and the ramification of f1 is in Table 1. As D ⊇ C is
maximal for which A acts faithfully on A/D, it follows that D is either a stabilizer
A1 := A ∩ Sn−1 in the natural action or a stabilizer A2 = A ∩ (Sn−2 × S2) of a set of
cardinality 2, and in the latter case the ramification of f1 is in Table 1. The former
case D = A1 does not occur since h is not equivalent to f1. In the latter case D = A2,
it is intransitive, and hence h(X(k)) ⊆ Redf1 and (2) holds. �

When adding the lists from Remark 5.5.(1) as exceptions to Theorem 5.6, the same
proof would lower the degree assumption on f1 to merely deg f1 ≥ 10. In particular
over k = Q, Theorem 5.6 holds for polynomials f1 of degree deg f1 > 10 without
adding further exceptions.

Finally we conclude Theorem 1.2 from Corollary 5.3 and Theorem 5.4:

Proof of Theorem 1.2. Since xn, Tn, and an indecomposable degree 4 polynomial do
not appear as composition factors of f , the monodromy group of each fi is nonsolv-
able with proper solvable quotients by Theorem 2.1. Thus we may apply Corollary
5.3 to obtain a polynomial subcover h1 of h with the same Galois closure as of f1.

Since deg f1 > 31, the possibilities for h1 are described in cases (1)-(2) of Theo-
rem 5.4. In fact, as both h1 and f1 are polynomials with alternating or symmetric
monodromy Γ1, the point stabilizer of both of them is conjugate to the stabilizer in
the natural action of Γ1. Hence h1 and f1 are equivalent, as desired. �

6Theorem 5.3 of [41] is based on the work of Guralnick–Shareshain [29] but no other results in
the classification of monodromy groups are used.
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Appendix A. Proof of Theorem 2.3

The proof requires the following addition to Shih’s paper [55]. More generally,
a classification of indecomposable genus 1 coverings with more than one minimal
normal subgroup is addressed in [40].

Proposition A.1. Let f : X → P1 be an indecomposable covering of genus gX ≤ 1
whose monodromy group G has more than one minimal normal subgroup. Then
G/ soc(G) is solvable.

Proof. Since G has more than one minimal normal subgroup, it has two isomorphic
nonabelian minimal normal subgroup by the Aschbacher-Scott theorem [27, Theorem
11.2], so that soc(G) ∼= L2t for a nonabelian simple group L and t ≥ 1.

We claim that the proof in Shih’s paper yields that t = 1 even under the mere
assumption gX ≤ 1, showing that soc(G) ∼= L2. Since G/ soc(G) embeds into
Aut(L2)/Inn(L)2 ∼= (Aut(L)/Inn(L))2oS2 and Aut(L)/Inn(L) is solvable by Schreier’s
conjecture, this shows that G/ soc(G) is solvable, proving the proposition.

To prove the claim, we follow closely the proof of [55] and use the notation of [55,
§1-2]: Let S = [g1, . . . , gr] be a tuple with product 1 which is associated to f and
generates G. Let orb(g1) denote the multiset of orbits of g1 and set n := deg f . As
gX ≤ 1, the Riemann–Hurwitz formula implies that

0 ≥ 2(gX − 1) = −2n+
r∑
i=1

(n−#orb(xi)),

or equivalently u(S) ≥ r − 2, where u(gi) := #orb(xi)/n and u(S) :=
∑r

i=1 u(gi),
following the notation of [55, §2]. Shih’s proof uses the assumption gX = 0 only in
order to make sure the strict inequality u(S) > r−2 holds. However, we show below
that already the inequality u(S) ≥ r − 2 (or gX ≤ 1) suffices for his proof.

As in [55, (4.8)], one first shows that r ≤ 4 using [55, (4.7)]. Indeed, by [55,
(4.7).(1)], one has u(gi) ≤ 3/5, so that r − 2 ≤ u(S) ≤ 3r/5. The latter shows that
r ≤ 5 with equality only if u(gi) = 3/5 for all i. However, [55, (4.7).(2-3)] show that
u(gi) ≤ max{7/20, 11/30, 8/15, 11/20} = 11/20 < 3/5, so that indeed r ≤ 4.

For L 6= A5, Part (i) of [55, (4.9)] shows that in fact r = 3. For L = A5 and r = 4,
Part (ii) of [55, (4.9)] shows that three of the gi’s are involutions, and the remaining,
say g4, is of order m ≥ 3. This case is ruled out using merely u(S) ≥ r − 2 = 2:
Indeed, u(gi) ≤ 11/20 for i = 1, 2, 3 by [55, (4.9).(3)] and

u(g4) ≤ 1/m+
m− 1

m
· 1

n
max
1<i<m

{f(gi4)}
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by [55, (2.1).(2)]. Since this maximum is at most 1/10 by [55, (4.7)], the right hand
side is strictly smaller than 1/4 + 1/10 = 7/20 if m ≥ 4. For m ≥ 4, in total we have

u(S) =
3∑
i=1

u(gi) + u(g4) < 3 · 11/20 + 7/20 = 2,

contradicting u(S) ≥ 2. The case m = 3 is ruled out in [55, (4.9)] already using
merely the inequality u(S) ≥ 2, as needed.

Henceforth assume r = 3 and let k, `,m be the orders of g1, g2, g3, respectively.
Without loss of generality, we assume k ≤ ` ≤ m. Then [55, (4.11)] asserts that
(k, `,m) is one of the tuples (2, 3,m), 7 ≤ m ≤ 18, or (2, 4,m), 5 ≤ m ≤ 35, or
(2, 5,m), 5 ≤ m ≤ 10, or (2, 6,m), m = 6, 7, 8, or (3, 3,m), m = 4, 5, or (3, 4, 4). The
only estimate of u(S) used are those in [55, (4.10)] whose proof applies in the same
way when replacing the inequality u(S) > 1 with the inequality u(S) ≥ 1.

Finally, [55, (4.17)-(4.21)] show that t = 1: This relies on [55, (4.16)] which applies
the inequality u(S) ≥ 1 in order to deduce that (k, `,m) is (2, 3, 8), or (2, 4, 5) or
(2, 4, 6). However, we note that for (k, `,m) = (2, 3, 7) or (2, 3, 10) the estimates
on u(S) in the proof of [55, (4.16)] do not contradict even the inequality u(S) > 1,
leaving these cases open. In these cases we refine the estimates as follows. Let
f(g) denote the number of fixed points of g ∈ G. If (k, `,m) = (2, 3, 10), then [55,
(2.1).(1)] gives:

(A.1) u(g3) ≤
1

10
(1 +

f(g53)

n
+ 4

f(g23)

n
+ 4

f(g3)

n
).

One has f(g53)/n ≤ 1/15 as in [55, (4.7).(3)] for L 6= A5, and f(g23)/n ≤ 1/12
by [55, (4.6).(2)], and f(g23)/n ≤ 1/60 by the assumption of [55, (4.16)]. Thus,
(A.1) gives u(g3) ≤ 11/75. As u(g1) + u(g2) ≤ 307/360 as in [55, (4.16)], one gets
u(S) ≤ 1799/1800, contradicting u(S) ≥ 1. For (k, `,m) = (2, 3, 7), [55, (2.1).(1)]
gives u(g3) ≤ (1/7)(1 + 6f(g3)/n). As f(g3)/n ≤ 1/60 by assumption of [55, (4.16)],
one has u(g3) ≤ 61/420. As u(g1) + u(g2) ≤ 307/360, this gives u(S) ≤ 503/504,
contradicting u(S) ≥ 1. Now, [55, (4.16)] and the above addition in case (k, `,m) =
(2, 3, 7) or (2, 3, 10) implies that the inequality u(S) ≥ 1 suffices for [55, (4.17)-(4.21)].

�

Proof of Theorem 2.3. We use the Aschbacher–O’Nan–Scott structure theory of prim-
itive groups [27, Theorem 11.2]. Since G is assumed to be nonaffine, soc(G) is iso-
morphic to a power Lt of a nonabelian simple group L. Proposition A.1 shows that
either soc(G) is the (unique) minimal normal subgroup, or G/ soc(G) is solvable.
Henceforth assume soc(G) is the unique minimal normal subgroup of G.

Consider the action of G on the set ∆ = {L1, . . . , Lt} of simple direct factors in
soc(G), and let K be its kernel. Since 2(gX − 1) < deg f/1000 and G is nonaffine,
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[30, Theorem 9.3] implies that either G/K is solvable or G/K ∼= A5 or S5 with t = 5.
Since Lt ≤ K ≤ Aut(L)t and Aut(L)/L is solvable by Schreier’s conjecture, it follows
that G/ soc(G) ∼= (G/K)/(K/ soc(G)) is solvable when G/K is. In particular, since
St is solvable for t ≤ 4, we may henceforth assume t ≥ 5.

In case soc(G) acts regularly, we follow the argument of [30, Corollary 9.4]: Since a
nontrivial normal subgroup of a primitive group acts transitively, we haveH soc(G) =
G, whereH is a point stabilizer. Moreover, as soc(G) is regular, we have H∩soc(G) =
1 and G = Hnsoc(G). Thus H acts transitively on ∆, and hence the stabilizer H1 of
L1 ∈ ∆ in this action is of index at least t ≥ 5, while the kernel H ∩K of this action
is solvable since H ∩ soc(G) = 1 and K/ soc(G) is solvable. However, the image of
the action H1 → Aut(L1) contains the group of inner automorphisms on L1 by [3,
Theorem 1]7. As H ∩K is solvable and is contained in H1, it follows that H/H ∩K
contains a nonsolvable subgroup H1/H1 ∩K of index ≥ 5. Thus H/H ∩K 6∼= A5, S5

and is nonsolvable. As G/K ∼= H/H∩K (since HK = G) the same conclusion holds
for G/K, contradicting the above conclusion from [30, Theorem 9.3].

Henceforth assume soc(G) is not regular, that is, H ∩ soc(G) 6= 1. The coverings
for which H ∩L1 = 1 and 2(gX − 1) < deg f/168, were classified in [2, Theorem]. As
explained in [2, (11.1) and (19.1)], the resulting coverings have monodromy group
G ≤ S5 o S2 with soc(G) = A2

5, so that G/ soc(G) is solvable.
Henceforth assume H∩L1 6= 1, in which case the group is called of product type. In

this case, as gX ≤ 1, [28, Theorem 7.1] implies that8 either G/ soc(G) ∼= A5 such that
its regular action is of genus 0, or that G ≤ S` o S5 with ` ≤ 10 and G/ soc(G) ∼= S5

with regular action of ramification type [260], [430], [524]. The first case is ruled out by
[28, Theorem 8.6], whereas a straightforward computer check shows that the second
case does not occur with genus gX ≤ 1. �
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