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Abstract. We give an affirmative answer to the Grunwald problem for new families of
non-solvable finite groups G, away from the set of primes dividing |G|. Furthermore,
we show that such G verify the condition (BM), that is, the Brauer-Manin obstruction
to weak approximation is the only one for quotients of SLn by G. These new families
include extensions of groups satisfying (BM) by kernels which are products of symmetric
groups Sm, with m 6= 2, 6, and alternating groups A5. We also investigate (BM) for small
groups by giving an explicit list of small order groups for which (BM) is unknown and we
show that for many of them (BM) holds under Schinzel’s hypothesis.

1. Introduction

The Grunwald problem is a stronger version of the Inverse Galois Problem (IGP) orig-
inating in the classical problem of determining which division algebras admit a G-crossed
product structure for a given finite group G, see [Sch68, Son83, NP10, HHK11, RS13]. Fur-
ther recent interest in the problem arose from its relation to the regular IGP [DG12, KLN19]
and weak approximation [Har07, DLAN17, HW20].

The problem asks for the possible local behaviour of Galois extensions L/k with finite
Galois groupG, that is, the possibilities for their completions Lv/kv at finitely many places v
of k. It may be stated as follows. Given a finite set of places S of a number field k, and
Galois field extensions L(v)/kv for v ∈ S with embeddings Gal(L(v)/kv)→ G, determine if
there exists a Galois extension L/k with Gal(L/k) ' G such that Lv ∼= L(v) for all v ∈ S?

The Grunwald-Wang theorem [Wan50] answers the problem affirmatively when G is
abelian and S does not contain a place dividing 2. Nevertheless, in [Wan48], a counterex-
ample with k = Q, 2 ∈ S and G = Z/8Z is given by Wang. In fact, Grunwald problems are
expected to be solvable whenever the places of S do not divide the order of G, a property
also known as the tame approximation property for G over k [DLAN17]. The answer at
places dividing |G| is less clear, cf. [Phi22, §3.1-3.2] and [RM22] for recent work on certain
groups G.

A main approach to the IGP and the Grunwald problem originates in Noether’s con-
struction, where G is equipped with a free action on a rational space and the corresponding
quotient is considered. Here we consider more generally a finite algebraic k-group G, choose
an embedding G

ι
↪−→ SLn,k, and let X := SLn,k/G be the quotient. The solvability of all

Grunwald problems for a constant group G is then equivalent to the weak approxima-
tion (WA) property on X [Har07], that is, to the set X(k) of k-rational points being dense
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in X(kΩ) :=
∏
v∈Ωk

X(kv), where Ωk is the set of places of k and the product is endowed
with the product topology.

In all known instances where (WA) fails, the failure is explained by the Brauer–Manin
set. It is well known that X(k) is contained in a closed subset X(kΩ)Brun(X) ⊆ X(kΩ) cut
out by the Brauer–Manin obstruction, see §2.3. It may happen that the latter containment
is strict, so that (WA) fails. It is conjectured that X(k) is in fact dense in X(kΩ)Brun(X)

for X as above. When this holds, we say that the Brauer–Manin obstruction to weak ap-
proximation is the only one on X and that G verifies (BM). This does not depend on n,
nor on the embedding ι by the "no-name" lemma [CTS07, Corollary 3.9] and [CTS21,
Proposition 13.3.11]. Furthermore, if a constant group G verifies (BM), then the tame
approximation property holds for G [LA19, Corollary 6.3].

The property (BM) is known for many solvable groups such as abelian k-groups by
Borovoi [Bor96], split extensions of k-groups that verify (BM) by an abelian group by Harari
[Har07], and for finite supersolvable k-groups by Harpaz–Wittenberg [HW20]. However,
little is known about (BM) for non-solvable groups. In fact the known examples of such
groups are the symmetric groups Sn, the alternating group A5 [Mae89], the simple group
of Lie type PSL2(F7) [Mes05] and, more generally, groups for which a generic polynomial
exists, that is, when the quotient X is retract rational [JLY02, Chapter 5].

In the present paper, we show that group extensions of a group verifying (BM) by certain
non-solvable kernels N , such as powers of A5 andSn, also verify (BM), yielding new families
of non-solvable groups verifying (BM) and having the tame approximation property.

Theorem 1.1. Let k be a number field. Consider a short exact sequence of finite algebraic
k-groups

(1.1) 1 N E Q 1,

with N(k) ' At05 ×
∏s
i=1 S

ti
ni

for s, t0, t1 . . . , ts ∈ N ∪ {0} and n1, . . . , ns ∈ N \ {2, 6}. If Q
verifies (BM) over k, then E also verifies (BM) over k.

In particular, when E is constant and S is a finite set of primes coprime to |E|, all
Grunwald problems for E over S are solvable, that is, E has tame approximation over k.

In a parallel work, Harpaz and Wittenberg [HW24, (1) of Corollary 4.13] prove indepen-
dently – with a different method – the theorem in case Q is supersolvable and N(k) ' A5

or Sn for n ∈ N \ {2, 6}. For supersolvable Q, their theorem [HW24, Theorem 4.5] actually
allows N to be any group that satisfies the following condition:

(•)
For every homogeneous space X of SLn,k and x ∈ X(k) whose stabiliser H over x
satisfies H(k) ' N(k), the Brauer-Manin obstruction to weak approximation is
the only one on X.

For the proof of Theorem 1.1, we do not require Q to be supersolvable but on the other hand
assume Q verifies (BM) and reduce to the case where (1.1) splits. In such case, we show
that N can be chosen to be any group which satisfies (•) with the additional condition on
the X’s to have a rational point. For the purpose of proving this, we supply in Theorem 6.1
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a dévissage method for (BM) which extends Harari [Har07, Théorème 1] and whose proof
relies on his fibration method [Har07, Théorème 3]. In particular, this approach allows
showing that (BM) holds for iterative semidirect products of groups verifying (BM) by
abelian groups or by products of copies of A5, Sn, n 6= 2, 6.

To allow powers of Sn and A5 in the kernel, we first consider more generally forms G
of powers of constant k-groups N which are center-free and indecomposable, that is, which
cannot be written as a product of two nontrivial groups. We show that such groups G
are Weil restrictions along a finite étale algebra A/k of forms of the extension of N to A,
see Theorem 3.1. This yields a description of homogeneous spaces of SLr whose geometric
stabilisers are powers of complete indecomposable center-free groups, see Theorem 4.1.

We then deduce that homogeneous spaces of SLr with geometric stabiliser St
n, n 6= 2, 6,

are stably rational, see Corollary 4.2. Similarly, we show that homogeneous spaces of SLr
with geometric stabiliser At5 are retract rational, see Corollary 5.2, extending Maeda’s
theorem [Mae89] on the stable rationality of the field of invariants of A5. To carry this out,
we use a "twisted" version of an argument of Buhler [JLY02, §2.3, pp.46-47] to produce a
strongly versal G-torsor with a rational base for twisted forms G of At5, t ≥ 1.

Small groups. We apply Theorem 1.1 and previous known results in the literature to give
an explicit list of the non-solvable groups with cardinality at most 500 for which (BM) is
known, see Proposition 6.3. The list of those "small" non-solvable groups for which (BM) is
unknown is given in Table 6.1. The smallest non-solvable groups for which (BM) is unknown
are central extensions of A5,Sym5, and PSL2(7) of orders 240 and 336. The smallest simple
group for which (BM) is unknown is A6. We also list the "small" (solvable) groups of
cardinality at most 191 for which (BM) is unknown, see Proposition 7.4. Furthermore,
under Schinzel’s hypothesis (H) [SS58], we show that all but one, a semidirect product
of Z/4Z acting on the Heizenberg group He3, verify (BM). We suspect that a similar
reasoning could show that He3 oZ/4Z verifies (BM) conditionally on Schinzel’s hypothesis.

(BM) under Schinzel. To get (BM) under the Schinzel hypothesis, we prove the following
theorem. Recall that a finite k-group Q is supersolvable if there exists a sequence {1} =
Q0 ⊆ Q1 ⊆ · · · ⊆ Qn = Q of normal k-subgroups of Q such that Qi/Qi−1 is cyclic for all i.

Theorem 1.2. Let k be a number field. Consider a short exact sequence of finite algebraic
k-groups

1 N E Q 1

such that the derived subgroup of N(k) is Z/2Z. Assume that either Q is supersolvable,
or the sequence splits and Q verifies (BM). If Schinzel’s hypothesis (H) holds, then E
verifies (BM).

Note that the class of supersolvable groups contains that of nilpotent groups. Further
note that supersolvability differs from solvability by requiring that Qi−1 is normal in Q and
not only in Qi. As an example, the alternating group A4 is solvable, but not supersolvable.

To prove the theorem, we show (BM) holds under the Schinzel’s hypothesis (H) for
homogeneous spaces of SLr whose geometric stabiliser has derived subgroup Z/2Z, see
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Theorem 7.1. For this, we combine the fibration method [Wit07, Chapitre 3, Corollaire 3.5]
that relies on Schinzel’s hypothesis (H), and a descent method for torsors under tori [HW20,
Corollaire 2.2]. We then make use of Theorem 6.1 and the aforementioned theorem of
Harpaz and Wittenberg [HW24, Theorem 4.5] to deduce Theorem 1.2 in Section 7.2.

Acknowledgement. We thank Olivier Wittenberg for helpful discussions, noting the re-
lation to Schinzel’s hypothesis and shedding light on the proof we give in Appendix A.
The first author was supported by a «Contrat doctoral spécifique normalien» from the
École normale supérieure de Paris. The second author was supported by the Israel Science
Foundation, grant no. 353/21.

2. Preliminaries

2.1. Notation. Throughout the paper, if k is a field, k denotes a fixed separable closure
of k, and Γk the absolute Galois group Gal(k/k). A variety over k is a separated k-scheme
of finite type. If G is an algebraic group over a perfect field k, a homogeneous space of G
is a k-variety X endowed with a left action of G such that the action of G(k) on X(k) is
transitive.

For a connected scheme S and group S-schemes G and H, we say that H is an S-form
of G if there exists an étale cover T → S such that the base changes GT and HT are
T -isomorphic group schemes. When S = Spec(k), we say H is a k-form of G. Recall that
S-forms of G are classified by the pointed set H1

ét(S,Aut(G)) [Mil80, Chapter III, §4, p.134]
where Aut(G) is the sheaf of automorphisms of G.

When S′ → S is a finite locally free morphism of schemes and X ′ is a quasi-projective
S′-scheme, we denote by ResS′/S(X ′) the Weil restriction of X ′ along S′ → S, which is
again an S-scheme [BLR90, §7.6, Theorem 4].

2.2. Torsors. Let k be a field, G an affine algebraic k-group and f : Y → X a morphism
of k-varieties. Assume a left (resp. right) action of G on Y is given, and let G act trivially
on X. We say that f is a left (resp. right) torsor over X when f is a G-equivariant étale
map and the morphism G×X Y → Y ×X Y mapping (g, y) to (g.y, y) (resp. to (y.g, y)) is
an isomorphism. When the context is clear, we omit the left or right nature of the torsor.

Furthermore, when A is a k-algebra and G a group Spec(A)-scheme, we shall denote
by H1(A,G) the pointed set H1

ét(Spec(A), G) defined in [CTS21, §2.2.1]. When A = k, this
corresponds to the nonabelian Galois cohomology defined in [Ser94, Chapitre I, §5] and
it classifies both right and left G-torsors over k. In this case, we let Z1(k,G) denote the
pointed set of 1-cocycles, that is, continous maps (aγ)γ∈Γk

: Γk → E verifying aγζ = aγγ(aζ)
for any γ, ζ ∈ Γk, see [Ser62, Chapitre I, §5.1].

When G is an affine algebraic group over a field k, σ ∈ Z1(k,G) is a right k-torsor
under G, and Y a quasi-projective variety endowed with a left G-action, we denote by σY
the quotient of σ ×k Y by the action of G defined as g.(s, y) = (sg−1, gy) (the existence of
such a variety is for instance ensured by [Sko01, Lemma 2.2.3]). The quotient σY is also
known as the contracted product of σ and Y . In particular, for a k-group G and a right
k-torsor σ ∈ Z1(k,G) one gets the twisted group σG when G is acting on itself on the left
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by g.h = ghg−1. Then, the twisted group σG acts on σY in the following way: if (s, g) is
the class of α ∈ σG(k) and (s′, y) the class of β ∈ σY (k), then after choosing h ∈ G(k) such
that s′ = s.h, one may set α.β as the class of (s, (gh).y) (also see [Sko01, p.20, Example 2]).

Let f : Y → X be a left G-torsor, for a linear algebraic k-group G. It is said to be weakly
versal if, for every field extension M/k and every left G-torsor t : T → Spec(M), there
exists an M -point a of X such that t is the base change of f by a. If, moreover, a may be
chosen in any nonempty Zariski open subset of X, then f is said to be versal. Following the
terminology of [Fir23, §1] and the definitions in [DR15, §1], we say that f is strongly versal
if there exists a finite dimensional k-vector space V on which G acts on the left faithfully
and a G-equivariant dominant rational map V 99K Y . According to [DR15, Theorem 1.1],
we have the following implications:

strongly versal ⇒ versal ⇒ weakly versal.
When s is a finite tuple of indeterminates, we say that a polynomial f(s, x) ∈ k(s)[x] is

a generic polynomial over k for a finite group G if for every Galois extension E/M with
group G and an overfield M ⊇ k, there exists a ∈ M |s| such that f(a, x) is well defined
and E is a splitting field of f(a, x) over M . By [DM03, Theorem 1], the existence of a
generic polynomial for G is equivalent to the existence of a weakly versal G-torsor whose
base is a nonempty open subset of an affine space.

2.3. Local-global principles and rationality. Over number fields k, we consider weak ap-
proximation and the Brauer–Manin obstruction on a smooth k-varietyX. Recall thatX ver-
ifies weak approximation off a finite subset S ⊆ Ωk wheneverX(k) is dense in

∏
v∈Ωk\S X(kv),

the latter being endowed with the product topology. Let Br(X) = H2
ét(X,Gm) denote the

Brauer group of X, and Brun(X) the Brauer group of any smooth compactification of X
[CTS21, Proposition 3.7.10]. Setting X(kΩ) =

∏
v∈Ωk

X(kv), the Brauer-Manin pairing has
been introduced by Manin [Man71] (see also [Har07, §1.3]) and is given by:

Brun(X)×X(kΩ) Q/Z

((xv), α)
∑

v∈ΩK
invv (x∗v(α)) ,

where invv : Br(kv) → Q/Z is the local invariant and x∗v stands for the specialization
morphism of Brauer groups Br(xv) : Br(X) → Br(kv). Elements of X(kΩ) orthogonal
to Brun(X) form a closed subset of X(kΩ) which contains X(k) and which is called the
Brauer-Manin set of X. We shall say that the Brauer–Manin obstruction to weak approx-
imation is the only one on X if X(k) is dense in X(kΩ)Brun(X). In this situation, we will
write that X verifies (BM).

Furthermore, over an arbitrary field k, we describe the properties of varieties considered
throughout the paper. Two k-varieties X and Y are said to be stably k-birational, or
stably k-birationally equivalent, if there exist positive integers m and n such that X ×Pm

k
and Y × Pn

k are k-birational. The variety X is said to be stably k-rational if it is stably
k-birational to Pn

k for some positive integer n. We also say that the variety X is retract
k-rational if there exists a rational map Pn

k 99K X with a rational section, for some positive
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integer n. When there is no confusion, the underlying field will be omitted in the preceding
terminologies. Weak approximation and (BM) are stably k-birational invariants.

As a ubiquitous statement in this article, we recall the statement of the "no-name"
lemma [CTS07, Corollary 3.9]:

Lemma 2.1 ("No-name" lemma). Let k be a field and G a finite k-group. For positive
integers r, s any embeddings G ↪−→ SLr,k and G ↪−→ SLs,k, the quotient varieties SLr,k/G
and SLs,k/G are stably k-birational.

Also, for k-groups we consider throughout this paper the following properties:

Notation 2.2. When k is a field, consider the following properties on affine k-groups G:
(a) there exists an embedding G ↪−→ SLn,k such that the variety SLn,k/G is stably k-

rational;
(b) there exists a strongly-versal G-torsor Y → X over k, where X is rational;
(c) there exists an embedding G ↪−→ SLn,k such that the variety SLn,k/G is retract k-

rational;
(d) the field k is a number field and there exists an embedding G ↪−→ SLn,k such that

the Brauer-Manin obstruction to weak approximation is the only one for the vari-
ety SLn,k/G;

(e) there exists a finite set of places S of k and an embedding G ↪−→ SLn,k such that the
variety SLn,k/G verifies weak approximation off S.

One may notice that properties (a), (c), (d) and (e) of Notation 2.2 do not depend on
the choice of the embedding, by Lemma 2.1 combined to the stably birational invariance of
stable rationality, retract rationality, the Brauer-Manin obstruction to weak approximation
and weak approximation off a finite set of places [CTS21, Proof of Proposition 13.2.3].
Furthermore, we have the following classical implications:

(a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (e)
where the first implication is given by choosing Y → X as being f×idPr

k
where f : SLn,k →

SLn,k/G and Pr
k is chosen such that Pr

k × SLn,k/G is rational. Moreover, the second
implication is a consequence of the equivalence of (1) and (3) in [Mer17, Proposition 4.2].

2.4. Preliminaries on group theory and almost complete stabilisers. Let Cn denote
the cyclic group of order n, and Sn (resp. An) the symmetric (resp. alternating) group of
degree n.

Let us recall that a finite group G is complete if it is center-free with no nontrivial outer
automorphism. Examples of complete groups are the Sn’s for n 6= 2, 6. Furthermore, we
will say that a group G is indecomposable if it cannot be written as a product of nontrivial
groups: this is for example the case of Sn and An when n ≥ 1, since their normal subgroups
have no direct factor.

Before going any further, let us state the following ubiquitous lemma on automorphisms
of powers of indecomposable groups.

Lemma 2.3 ([Bid08, Theorem 3.1]). If N is a group and t a positive integer, then the
following morphism is injective:
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ι : Aut(N)t oSt Aut(N t)

((ϕi)
t
i=1, σ)

[
(n1, . . . , nt) 7→

∏t
i=1 ϕi(nσ−1(i))

]
,

where St acts on Aut(N)t by σ.(ϕi)
t
i=1 = (ϕσ−1(i))

t
i=1 for any σ ∈ St and (ϕi)

t
i=1 ∈

Aut(N)t. Moreover, if N is indecomposable and center-free, then ι is an isomorphism.

Using the terminology of [HW24, §4.1.4], we shall say that a finite group G is almost
complete if it is center-free and if the morphism Aut(G)→ Out(G) has a section. As these
groups being ubiquitous in this article, we summarise their basic properties in the following
lemma. Complete groups are examples of almost complete groups.

Lemma 2.4. (i) A finite group G is almost complete if and only if any short exact
sequence of profinite groups

1 G E Q 1

splits as a semi-direct product of profinite groups E ' GoQ.
(ii) If G is a finite almost complete indecomposable group, then for any positive integer t,

the group Gt is almost complete.
(iii) If H1, . . . ,Hr are finite almost complete groups where no pair of the Hi have a

common direct factor, then
∏r
i=1Hi is almost complete.

Proof. Assertion (i) corresponds to [HW24, Lemma 4.12.(1)]. To prove (ii), first notice
that Gt is center-free. Furthermore, since G is indecomposable, Lemma 2.3 ensures that
Aut(Gt) ' Aut(G)toSt where St acts on Aut(G)t by permuting the coordinates. Denote
by s a section of a : Aut(G) → Out(G). Then, the morphism Aut(Gt) → Out(Gt) corre-
sponds to the morphism

∏
1≤i≤t a× idSt : Aut(G)t oSt → Out(G)t oSt and a section is

given by
∏

1≤i≤t s× idSt , which prove (ii).
As for (iii), the group

∏r
i=1Hi is clearly center-free. Then [Bid08, Theorem 2.2] ensures

that Aut(
∏r
i=1Hi) =

∏r
i=1 Aut(Hi), so that the morphism

Aut

(
r∏
i=1

Hi

)
→ Out

(
r∏
i=1

Hi

)
,

which coincides with
∏r
i=1(Aut(Hi) → Out(Hi)), has a section since each of the Hi’s is

almost complete. �

Combining Lemma 2.4.(i) with a theorem of Pál–Schlank one gets:

Proposition 2.5. Let X be a homogeneous space of SLn,k and x ∈ X(k). Denote by G the
stabiliser of x. If the group G(k) is finite and almost complete, then X(k) 6= ∅.

Proof. By Lemma 2.4.(i) the exact sequence

1→ G(k)→ π1
ét(X,x)→ Γk → 1,

splits. For homogeneous spaces of SLn, the existence of such a section implies the existence
of a rational point by [PS22, Theorem 7.6]. �
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Eventually, the following proposition gives a structural statement for homogeneous spaces
whose stabilisers are products of almost complete groups with no pair having a common
direct factor:

Proposition 2.6. Let H1, . . . ,Hr be almost complete finite constant k-groups with no pair
of the Hi’s having a common direct factor, and m a positive integer. Suppose X is an
SLm,k-homogeneous space whose geometric stabiliser is the direct product

∏r
i=1Hi. Then X

is stably birational to a product
∏r
i=1Xi where:

a) there exists n ∈ N such that each Xi is a SLn,k-homogeneous space;
b) for each i ∈ {1, . . . , r}, and for any xi ∈ Xi(k), if one denotes by Gi the stabiliser

of xi, then Gi(k) ' Hi.

Proof. By Proposition 2.5, one has X(k) 6= ∅. The choice of a rational point of X supplies
a k/k-form G of the constant group

∏r
i=1Hi and an isomorphism of SLm,k-homogeneous

spaces X ' SLm,k/G.
Furthermore, [Bid08, Theorem 2.2] ensures that Aut(

∏r
i=1Hi) =

∏r
i=1 Aut(Hi). From

this, the Galois action on G(k) actually corresponds to a morphism Γk →
∏r
i=1 Aut(Hi).

For each i ∈ {1, . . . , r}, the projection Γk → Aut(Hi) of the Galois action on Aut(Hi)

defines a k/k-form H̃i, so that G '
∏r
i=1 H̃i. Now, choose a positive integer n and, for

each i ∈ {1, . . . , r}, an embedding H̃i ↪−→ SLn,k. Then, Lemma 2.1 ensures that SLm,k/G

is stably birational to
∏r
i=1 SLn,k/H̃i, so that after setting Xi = SLn,k/H̃i, one gets the

required statement. �

2.5. Nonabelian Shapiro’s map. If Γ is a profinite group, a Γ-group is a discrete group E
endowed with a continuous action Γ

ϕ−→ Aut(E). We shall also say that ϕ yields a Γ-group,
and write g.e := ϕ(g)(e) for (g, e) ∈ Γ×E when there is no confusion as to what ϕ is. We
then denote by E oϕ Γ the semidirect product relative to ϕ and by SecΓ(E oϕ Γ) the set
of continuous sections of E oϕ Γ→ Γ. We use the following well-known correspondence:

Fact 2.7 ([Sti10, Lemma 7]). Let Γ be a profinite group and ϕ : Γ → Aut(E) a Γ-group.
Denote by pr1 : E oϕ Γ → E the first projection – which is not necessarily a morphism.
Then the following map is bijective

SecΓ(E oϕ Γ) Z1(Γ, E)

σ pr1 ◦ σ
.

For a closed subgroup ∆ ≤ Γ and a ∆-group E, we let

IndΓ
∆E := {f : Γ→ E | f(dg) = df(g) for all (d, g) ∈ ∆× Γ}

denote the induced Γ-group endowed with the left action (γ.f)(g) = f(g.γ) for γ ∈ Γ

and f ∈ IndΓ
∆E. We may further identify IndΓ

∆E with E∆\Γ, where Γ acts on ∆\Γ on the
right, via the following lemma.

Lemma 2.8. Let Γ be a profinite group, ∆ a closed subgroup of Γ and E a ∆-group. Fix
a set of representatives {εi : i ∈ ∆\Γ} of ∆\Γ and set
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ω : IndΓ
∆E E∆\Γ

f (f(εi))i∈∆\Γ

.

Furthermore for i ∈ ∆\Γ, γ ∈ Γ, write εiγ = δi(γ)εi.γ for a unique δi(γ) ∈ ∆. Then:

(1) the map ω is an isomorphism of groups, which endows E∆\Γ with a Γ-group structure
defined as the composition of the Γ-group Γ→ Aut(IndΓ

∆E) with

Aut(ω) : Aut(IndΓ
∆E) Aut(E∆\Γ)

ϕ ωϕω−1

;

(2) furthermore, the action of γ ∈ Γ on (ei)i∈∆\Γ ∈ E∆\Γ described in (1) is given by

γ.(ei)i∈∆\Γ = (δi(γ).ei.γ)i∈∆\Γ;

(3) consider the Γ-group structure on E∆\Γ in (1) and let 1 denote the trivial coset
in ∆\Γ. For a ∈ Z1(Γ, E∆\Γ), if we write aγ = (ei(γ))i∈∆\Γ, then:

ei(γ) = δ1(εi)
−1.
[
e1(εi)

−1e1(δi(γ)) (δ1(δi(γ)).e1(εi.γ))
]

;

(4) if ∆ acts trivially on E, then ω does not depend on the choice of the set of repre-
sentatives of ∆\Γ. Furthermore, the conclusion of (3) may be rewritten as:

ei(γ) = e1(εi)
−1e1(δi(γ))e1(εi.γ).

Proof. The proof of (1) and (2) is straightforward, and (4) follows immediately from (3).
Let us prove (3). Since a is a cocycle, aγζ = aγγ(aζ) for γ, ζ ∈ Γ, so that (2) gives:

(2.1) ei(γζ) = ei(γ)
(
δi(γ).ei.γ(ζ)

)
.

Noting that i.ε−1
i = 1, and applying (2.1) with (i, γ, ζ) replaced by (1, εi, γ), we get:

(2.2) e1(εiγ) = ei.ε−1
i

(εiγ) = e1(εi)
(
δ1(εi).ei(γ)

)
.

Using i.ε−1
i = 1 again, (2.1) with (i, γ, ζ) replaced by (1, δi(γ), εi.γ) gives:

(2.3) e1

(
δi(γ)εi.γ

)
= ei.ε−1

i

(
δi(γ)εi.γ

)
= e1(δi(γ))

(
δ1(δi(γ)).e1(εi.γ)

)
.

But since εiγ = δi(γ)εi.γ , we can equate (2.2) and (2.3), yielding (3). �

Returning to the general setting, note that the morphism of groups IndΓ
∆E → E mapping

f : Γ→ E to f(1) is ∆-equivariant, and hence induces Shapiro’s map of pointed sets

sh : Z1(Γ, IndΓ
∆E)→ Z1(∆, E)

which is known to be surjective by Shapiro’s lemma [Sti10, Proof of Proposition 8].
Moreover, if ∆ acts trivially on E, then Shapiro’s map coincides, via Fact 2.7, with a

map:

(2.4) sh′ : SecΓ(IndΓ
∆E o Γ)→ Homcont(∆, E).
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In this case, if we use notations of Lemma 2.8 and identify IndΓ
∆E with E∆\Γ via ω, the

Shapiro map sh′ can be described as follows:

(2.5)
sh′ : SecΓ(E∆\Γ o Γ) Homcont(∆, E)

γ ∈ Γ 7→ ((ei(γ))i∈∆\Γ, γ) δ 7→ e1(δ)
.

3. Structure of forms for powers of groups

The following theorem is the main result regarding powers of groups.

Theorem 3.1. Let N be a finite constant k-group and t a positive integer. Assume further
that N is indecomposable, with trivial center. If an algebraic k-group G is a k-form of N t,
then there exists an étale k-algebra A of degree t and a k-form ÑA of NA := N ⊗k A such
that G = ResA/k(ÑA).

Before giving a proof, let us recall how Weil restrictions are related to induced Γk-groups.

Lemma 3.2 ([Wei82, Theorem 1.3.1]). Let L/k be a finite separable extension of fields.
Fix an embedding σ0 : L ↪−→ k where k is a separable closure of k and set ΓL = Gal(k/L)
which is a closed subgroup of Γk. Then for any algebraic group G over L, there exists a
Γk-equivariant bijection

(ResL/kG)(k) ' IndΓk
ΓL

(G(k))

of Γk-groups, where ΓL acts on the left on G(k) = HomSpec(L)(Spec(σ0), G) by composition,
where Spec(σ0) denotes the Spec(L)-scheme Spec(k) corresponding to the embedding σ0.

We also use the following technical lemma concerning Shapiro’s map sh′ from (2.4)
when E is taken to be Aut(N). For this purpose, choosing a set of representatives of ∆\Γ,
we identify Aut(IndΓ

∆N) with Aut(N∆\Γ) via the isomorphism Aut(ω) from Lemma 2.8,
and Aut(N)∆\ΓoBij(∆\Γ) with a subgroup of Aut(N∆\Γ) = Aut(IndΓ

∆N) via Lemma 2.3.
Eventually, we denote by

(3.1)
ρ : Γ Bij(∆\Γ)

γ ρ(γ) : i 7→ i.γ−1

the right action of Γ on ∆\Γ.

Lemma 3.3. Let N be a finite group, Γ a profinite group and ∆ a closed subgroup of Γ acting
trivially on Aut(N). Let σ ∈ SecΓ(IndΓ

∆Aut(N)oΓ) and θ := sh′(σ) ∈ Homcont(∆,Aut(N)).
Denote by IndΓ

∆N the Γ-group induced by θ and let β : Γ → Aut(IndΓ
∆N) the associated

Γ-action. Then β factors as:

Γ IndΓ
∆Aut(N) o Γ IndΓ

∆Aut(N) o Bij(∆\Γ) IndΓ
∆Aut(N) o Bij(∆\Γ)σ (id,ρ) ψ

for some inner automorphism ψ of Aut(N)∆\Γ o Bij(∆\Γ).
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Proof. Let {εi : i ∈ ∆\Γ} be a set of representatives for ∆\Γ, and δi(γ) ∈ ∆ such that
εiγ = δi(γ)εi.γ . Write σ(γ) = ((ϕi(γ))i∈∆\Γ, γ) for γ ∈ Γ, so that ϕ : Γ → Aut(N)∆\Γ,
γ 7→ (ϕi(γ))i∈∆\Γ lies in Z1(Γ,Aut(N)∆\Γ) by Fact 2.7. Note that by Lemma 2.8.(3):

(3.2) ϕi(γ) = ϕ1(εi)
−1 ◦ ϕ1(δi(γ)) ◦ ϕ1(εi.γ), for γ ∈ Γ, i ∈ ∆\Γ.

Recall that β induces a Γ-action on N∆\Γ via (Aut(ω) ◦ β)(γ) = ω ◦ β(γ) ◦ ω−1. Moreover,
by Lemma 2.8.(2), we have

(3.3) ω ◦ β(γ) ◦ ω−1 : N∆\Γ N∆\Γ

(ni)i∈∆\Γ (δi(γ).ni.γ)i∈∆\Γ

Since ∆ acts on N through θ, and θ(δ) = ϕ1(δ) by the explicit description (2.5) of sh′,
morphism (3.3) takes the form:

ω ◦ β(γ) ◦ ω−1 : N∆\Γ N∆\Γ

(ni)i∈∆\Γ (ϕ1(δi(γ))(ni.γ))i∈∆\Γ

.

By definition of ι from Lemma 2.3 and by definition of ρ in (3.1), this is none but the image
by ι of the automorphism((

ϕ1(δi(γ))
)
i∈∆\Γ, ρ(γ)

)
∈ Aut(N)∆\Γ o Bij(∆\Γ).

However, by (3.2), this image is conjugate by the element (ϕ1(εi))i∈∆\Γ ∈ Aut(N)∆\Γ to

((id, ρ) ◦ σ)(γ) = (ϕi(γ), ρ(γ))

which proves the statement. �

We may now combine Lemmas 3.2 and 3.3 to give a proof of Theorem 3.1.

Proof of Theorem 3.1. Let G be a k-form of N t. After choosing an isomorphism of groups
G(k) ' N t, the action of Γk on G(k) gives rise to a continuous action of Γk on N t, that
is, to a morphism ϕ : Γk → Aut(N t). By Lemma 2.3, one has Aut(N t) ' Aut(N)t oSt,
where St acts on Aut(N)t by permuting the coordinates. The composition ψ : Γk → St

of ϕ with the projection Aut(N)toSt → St yields a right action of Γk on {1, . . . , t} defined
by l.γ := ψ(γ)−1(l). Now pick a set of representatives I ⊆ {1, . . . , t} of the distinct orbits
of {1, . . . , t} under the right action of Γk, so that N t =

∏
i∈I N

i.Γk . Thus ϕ factors as

(3.4) Γk

∏
i∈I αi−−−−−→

∏
i∈I

Aut(N i.Γk) ↪−→ Aut(N t)

where αi : Γk → Aut(N i.Γk) denotes the action of Γk on the i-th factor N i.Γk of N t. Let
us denote by Gi the k-form of N i.Γk corresponding to αi ∈ Z1(k,Aut(N i.Γk)). By the
factorisation (3.4), we thus have G =

∏
i∈I Gi.
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Next, we fix i ∈ I and rewrite Gi as a Weil restriction. For this purpose, we first use
Lemma 2.3 to identify Aut(N i.Γk) = Aut(N)i.Γk o Bij(i.Γk). Furthermore, if we denote
by ρi : Γk → Bij(i.Γk) the right action described above, then αi factors uniquely as

(3.5) Γk
σi−→ Aut(N)i.Γk o Γk ↪→ Aut(N)i.Γk o Bij(i.Γk)

for σi ∈ SecΓ(Aut(N)i.Γk oΓk). Letting Γi be the stabiliser of i under the right action of Γk
on i.Γk, we may further identify:

i.Γk ' Γi\Γk.

The Shapiro map (2.4) supplies a morphism θi := sh′(σi) : Γi → Aut(N). Denote by IndΓk
Γi
N

the Γi-group induced by θi and βi : Γk → Aut(IndΓk
Γi
N) the corresponding action of Γk.

Since αi = (id, ρ) ◦ σ by (3.5), Lemma 3.3 yields an inner automorphism ψi of Aut(N i.Γk)
such that

(3.6) Aut(ωi) ◦ βi = ψi ◦ αi.

Now, choosing χi ∈ Aut(N i.Γk) such that ψ−1
i is the conjugation map by χi, equation (3.6)

yields the following commutative diagram:

Γk

Aut(IndΓk
Γi
N) Aut(N i.Γk)

βi αi

Aut(χi◦ωi)

∼

.

In other words, the map

(3.7) χi ◦ ωi : IndΓk
Γi
N → N i.Γk

is a Γk-equivariant isomorphism of groups, where Γk acts on IndΓk
Γi
N (resp. N i.Γk) via βi

(resp. αi). Furthermore, recall that by definition of Gi, there is a Γk-equivariant isomor-
phism

(3.8) Gi(k) ' N i.Γk

where the action of Γk on the left-hand side (resp. on the right-hand side) is the Galois
action on points (resp. is given by αi). Also, if we setMi := k

Γi and ÑMi theMi-form of N
associated to θi ∈ Z1(Mi,Aut(N)), then Lemma 3.2 supplies a Γk-equivariant isomorphism
of groups

(3.9) ResMi/k(ÑMi)(k) ' IndΓk
Γi
N.

where the action of Γk on the left-hand side (resp. right-hand side) is the Galois action on
points (resp. is given by βi). Now, if we combine (3.8) and (3.9) with (3.7), the map χi ◦ωi
may be rewritten as a Γk-equivariant isomorphism

Gi(k) ' ResMi/k(ÑMi)(k)
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where the action of Γk on both sides is the Galois action on points. By Galois descent, this
extends to an isomorphism of algebraic groups

Gi ' ResMi/k(ÑMi).

Thus, by setting A :=
∏
i∈IMi and ÑA :=

∏
i∈I ÑMi , we eventually get

G '
∏
i∈I

ResMi/k(ÑMi) = ResA/k(ÑA)

which proves the statement. �

We deduce the following description of homogeneous spaces for powers of groups.

Corollary 3.4. Let N be a finite constant k-group, t a positive integer and G a k-form
of N t. Assume further that N is indecomposable with trivial center. Then there exist an
étale k-algebra A of degree t and a k-form ÑA of NA such that, for every k-embedding
G ↪−→ SLr,k and A-embedding ÑA ↪−→ SLs,A, the varieties SLr,k/G and ResA/k(SLs,A/ÑA)
are stably birationally equivalent.

Proof. By Theorem 3.1, there exists an étale k-algebra A of degree t and an A-form ÑA

of NA endowed with an isomorphism G ' ResA/k(ÑA). Let ÑA act faithfully on an affine
space An

A. By [CGP10, Corollary A.5.4.(3)], one then has that

ResA/k

(
An
A/ÑA

)
'
(
ResA/k (An

A)
)
/ResA/k

(
ÑA

)
.

Since ResA/k (An
A) ' Ant

k and ResA/k

(
ÑA

)
' G, one deduces from the latter that

ResA/k

(
An
A/ÑA

)
' Ant

k /G. The statement then follows from Lemma 2.1. �

Denote by Pk any of the properties on affine k-groups listed in Notation 2.2.

Corollary 3.5. Let t be a positive integer and N a constant indecomposable finite k-group
with trivial center. If every L-form of NL verifies PL for every separable field extension L/k
with [L : k] ≤ t, then any k-form of N t verifies Pk.

Proof. Let t be a positive integer and G a k-form of N t. Let us now choose an étale
k-algebra A of degree t and an A-form ÑA of NA as in Corollary 3.4. After choosing
a k-embedding G ↪−→ SLr,k and an A-embedding ÑA ↪−→ SLs,A, Corollary 3.4 ensures
that SLr,k/G and ResA/k

(
SLs,A/ÑA

)
are stably birational. Since A is étale over k, it

may be written as A =
∏

1≤i≤nMi where the field extensions Mi/k, i = 1, . . . , r are sep-
arable of degree at most t. Moreover, H1(A,Aut(N)) =

∏
1≤i≤n H1(Mi,Aut(N)) so that

one may write ÑA =
∏

1≤i≤n ÑMi , where the Mi-group ÑMi is an Mi-form of NMi for
i = 1, . . . , n. From this, we infer that SLr,k/G is stably birational to the variety∏

1≤i≤n
ResMi/k

(
SLs,Mi/ÑMi

)
.
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Furthermore, for each i ∈ {1, . . . , n}, the variety SLs,Mi/ÑMi is assumed to satisfy PMi .
Since the Weil restriction of a variety which is retract rational, resp. rational, resp. satisfies
that the Brauer-Manin obstruction to weak approximation is the only one, resp. satisfies
that weak approximation holds off a finite set of places, satisfies the same property (see
[CL22, Theorem 1.1] for the Brauer-Manin obstruction to weak approximation, and [Con12,
Example 4.2] for weak approximation), the statement of this proposition follows when Pk
is one of the properties (a), (c), (d) and (e) in Notation 2.2.

Assume now that Pk is property (b) in Notation 2.2. For each i ∈ {1, . . . , n}, choose
a strongly-versal ÑMi-torsor Yi → Xi where Xi is Mi-rational. By definition of strong
versality, one may pick an Mi-vector space Vi, a faithful action of ÑMi on Vi and an
ÑMi-equivariant rational dominant map Vi 99K Yi. After passing to Weil restrictions and
products one gets a rational G-equivariant map

∏
i ResMi/k(Vi) 99K

∏
i ResMi/k(Yi), which

is dominant by [CGP10, Corollary A.5.4.(1)], and by [CGP10, Corollary A.5.4.(3)] we get
a G-torsor

π :
∏
i

ResMi/k(Yi)→
∏
i

ResMi/k(Xi)

whose base is rational. Since
∏
i ResMi/k(Vi) is a k-vector space on which G acts linearly

and faithfully, π is strongly versal, which proves the statement. �

4. Complete groups

The following theorem reduces our study of homogenous spaces whose geometric stabiliser
is a power of a complete group to homogeneous spaces whose stabiliser is the group itself.

Theorem 4.1. Let H be an indecomposable complete constant finite k-group and t a positive
integer. Consider a homogeneous space X of SLn,k and x ∈ X(k) whose stabiliser is denoted
by G. If G(k) ' Ht, then there exists an étale k-algebra A of degree t such that for any
A-embedding HA ↪−→ SLr,A, the varieties X and ResA/k(SLr,A/HA) are stably k-birational.

Note that here, as opposed to in Corollary 3.4, the group HA is embedded in SLr,A as
a constant group. Let us start by giving an application of Theorem 4.1 when the given
complete group is a symmetric group:

Corollary 4.2. Let k be a field, X a homogeneous space of SLr,k and x ∈ X(k). Denote
by G the stabiliser of x. If there exist positive integers n, t with n 6∈ {2, 6} and G(k) ' St

n,
then X is stably rational.

Proof. First note that the symmetric group Sn is complete [Kur60, Chapter IV, §13, p.92].
Further, since it is indecomposable, Theorem 4.1 supplies an étale k-algebra A of degree t
such that X is stably birational to ResA/k(SLr,A/(Sn)A). The fundamental theorem of
symmetric polynomials, combined with Lemma 2.1, ensures that SLr,k/(Sn)k is stably
k-rational, meaning that there exist nonnegative integers r and s and a birational k-map

Pr
k ×k SLr,k/(Sn)k Ps

k
∼ .
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After tensoring by Spec(A) and passing to Weil restriction along A/k, we derive from the
latter a birational k-map

ResA/k(P
r
A)×k ResA/k(SLr,A/(Sn)A) ResA/k(P

s
A)∼ .

Since ResA/k(A
r
A) (resp. ResA/k(A

s
A)), which is an affine space, is an open subset of

ResA/k(P
r
A) (resp. ResA/k(P

s
A)), the latter is k-rational. From this, we conclude that

ResA/k(SLr,A/(Sn)A) is stably k-rational, which proves the statement. �

For the proof of Theorem 4.1, we need the following lemma that classifies the stabilisers
of a homogeneous space of SLn in terms of the outer Galois action on one of them. We use
the following terminology. Given an isomorphism of finite groups A ϕ−→ B and a continuous
action of a profinite group Γ on A, we shall call the action of σ ∈ Γ on B, given by
b 7→ ϕ(σϕ−1(b)), the action induced by ϕ. Given two continuous actions α : Γ → Aut(A)
and β : Γ → Aut(B) we say that ϕ is compatible with the outer actions of Γ on A and B
if the following diagram is commutative:

Out(A)

Γ

Out(B)

Out(ϕ)

where the upper diagonal map (resp. the lower diagonal map) is the composition of α
(resp. β) with the quotient morphism Aut(A) → Out(A) (resp. Aut(B) → Out(B)),
and Out(ϕ) is induced by the isomorphism Aut(ϕ) : Aut(A)→ Aut(B).

Lemma 4.3. Let X be a homogeneous space of SLN,k and x ∈ X(k) a rational point whose
stabiliser is a finite group G over k.

(i) Let b ∈ SLN (k) be such that bx ∈ X(k). If H denotes the stabiliser of bx, then
H = bGb−1. Moreover, via the isomorphism H(k) ' G(k) mapping h ∈ H(k)
to b−1hb, the induced action of σ ∈ Γk on G(k) is given by:

g 7→ b−1σ(b)σ(g)σ(b−1)b for g ∈ G(k), σ ∈ Γk.

(ii) Conversely, let H be a finite group over k endowed with an isomorphism of fi-
nite groups H(k) ' G(k) compatible with the outer action of Γk. Assume further
that G(k) has trivial center. Then there exists y ∈ X(k) whose stabiliser is H.

To give a proof of this lemma, we remind the following fact from Galois cohomology.

Reminder 4.4. Consider a short exact sequence of discrete groups

1 H E Q 1
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and Γ a profinite group. Let α, β : Γ → E be two continuous morphisms coequalised by
the map E → Q. Then the map σ ∈ Γ 7→ β(σ)α(σ)−1 is a cocycle in Z1(Γ, H) where the
action of Γ on H is given by σ.h = α(σ)hα(σ)−1, for any σ ∈ Γ and h ∈ H.

Proof. By assumption, hσ := β(σ)α(σ)−1 lies in H for σ ∈ Γ. Then (hσ) lies in Z1(Γ, H)
since, for all σ, τ ∈ Γ, one has:

hστ = β(σ)β(τ)α(τ)−1α(σ)−1 = β(σ)α(σ)−1α(σ)β(τ)α(τ−1)α(σ)−1 = hσα(σ)hτα(σ)−1.

�

Proof of Lemma 4.3. For (i), note that the action induced by the isomorphism ϕ : H(k)→
G(k), h 7→ bhb−1 is given by:

σ · g = ϕσϕ−1(g) = b−1σ(bgb−1)b = b−1σ(b)σ(g)σ(b−1)b, for g ∈ G(k), σ ∈ Γk.

Let H be as in the statement of (ii) and denote by ϕ : H(k) → G(k) the given iso-
morphism compatible with the outer action of Γk. Denote by α : Γk → Aut(G(k)) the
Galois action on G(k) and β : Γk → Aut(G(k)) the action induced by applying ϕ to
the Galois action on H(k). Since ϕ is compatible with the outer action of Γk, the map
Aut(G(k)) → Out(G(k)) is a coequaliser of α and β. As G(k) has trivial center, Re-
minder 4.4 applied to the short exact sequence

1 G(k) Aut(G(k)) Out(G(k)) 1ι

where ι maps g to the associated inner automorphism, implies that σ 7→ hσ := β(σ)α(σ)−1

lies in Z1(k,G). Using the embedding G(k) ↪−→ SLN (k), this cocycles also lies in Z1(k,SLN ).
Hilbert’s theorem 90 hence supplies b ∈ SLN (k) such that hσ = b−1σ(b) for all σ ∈ Γk.
From the fact that b−1σ(b) is in the stabiliser G(k) of x ∈ X(k), we infer that σ(bx) = bx
for all σ ∈ Γk so that bx ∈ X(k).

To summarise, for σ ∈ Γk and g ∈ G(k), since b−1σ(b) acts on G(k) via the inner
automorphism ι(b−1σ(b)), we have:

β(σ) ◦ α(σ−1)(g) = b−1σ(b)gσ(b−1)b

which boils down to
β(σ)(σ−1(g)) = b−1σ(b)gσ(b−1)b.

This being true for all g, one eventually gets that for all σ ∈ Γk and g ∈ G(k), the following
holds:

β(σ)(g) = b−1σ(b)σ(g)σ(b−1)b.

Thus, by (i), β coincides with the Galois action on the stabiliser of bx. By Galois descent,
we get an isomorphism of H with the stabiliser of the rational point bx. �

Proof of Theorem 4.1. Since H is complete, assertion (ii) of Lemma 2.4 ensures that Ht

is almost complete. From Proposition 2.5, one then infers that X has a rational point.
Thus, there exists a k-form G of Ht, an embedding G ↪−→ SLn,k and an isomorphism of
SLn,k-homogeneous spaces X ' SLn,k/G.
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By Corollary 3.4, there exists an étale k-algebra A of degree t and an A-form H̃A

of HA such that for any embedding H̃A ↪−→ SLr,A, the variety X is stably birational
to ResA/k(SLr,A/H̃A). Now, since A is étale over k, it may be written as A =

∏
1≤i≤dMi

where for i ∈ {1, . . . , d}, the field extension Mi/k is separable and finite. Furthermore,
since H1(A,Aut(H)) =

∏
1≤i≤d H1(Mi,Aut(H)), one may write H̃A =

∏
1≤i≤d H̃Mi where

the Mi-group H̃Mi is an Mi-form of HMi for = 1, . . . , d. From this, one deduces that

(4.1) ResA/k(SLr,A/H̃A) =

d∏
i=1

ResMi/k(SLr,Mi/H̃Mi).

For i ∈ {1, . . . , d}, one may then choose an isomorphism

(4.2) H̃Mi(k) ' H(k)

Since H is complete, its outer automorphisms are trivial, so that isomorphism (4.2) is
compatible with the outer Galois action of Γk. Lemma 4.3.(ii) may then be applied to ensure
that HMi is embedded in SLr,Mi and there exists an isomorphism of SLr,Mi-homogeneous
spaces

(4.3) SLr,Mi/H̃Mi ' SLr,Mi/HMi .

The combination of (4.1) and (4.3) then implies that

ResA/k(SLr,A/H̃A) '
d∏
i=1

ResMi/k(SLr,Mi/HMi).

The latter may be rewritten as ResA/k(SLr,A/H̃A) ' ResA/k(SLr,A/HA), to which X is
thus stably birational. �

5. Forms of powers of A5

In this section, we assume that k is a field of characteristic 0 and we construct strongly-
versal torsors for twisted forms of powers of A5. Recall that A5 is center-free and there is
a commutative diagram

(5.1)
Aut(A5) Out(A5)

S5 C2

where the bottom map is the signature morphism.

Theorem 5.1. Suppose char k = 0, let t a positive integer, and G a k-form of At5. Then
there exists a strongly-versal G-torsor Y → X where X is k-rational of dimension 2t.

We start by stating the following application of Theorem 5.1:
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Corollary 5.2. Let k be a field of characteristic zero, X a homogeneous space of SLr,k and
x ∈ X(k). Denote by N the stabiliser of x. If there exists a positive integer t such that
N(k) ' At5, then X is retract rational.

Proof. Since any transposition defines a section of (5.1), the group A5 is almost complete
by (i) of Lemma 2.4. Further, it is indecomposable so that At5 is also almost complete by (ii)
of Lemma 2.4. Proposition 2.5 ensures that the variety X has a rational point, and the
choice of such a point supplies a k-form G of At5 and an isomorphism of SLr,k-homogeneous
spaces X ' SLr,k/G. Now, Theorem 5.1 gives a versal left G-torsor Y → X where X is
k-rational. From the equivalence of (1) and (3) in [Mer17, Proposition 4.2], one thus gets
that SLr,k/G is retract-rational. �

By Corollary 3.5, applied with Pk as being property (e) of Notation 2.2, the proof of
Theorem 5.1 amounts to the following proposition. Denote the base change of A5 to a
field M by A5,M .

Proposition 5.3. Let M/k be a finite separable extension of fields and (aσ) ∈ Z1(M,S5).
Let us denote by Ã5 the M -form of A5,M associated to the 1-cocycle (aσ) via the identifica-
tion S5 = Aut(A5). Then there exists a strongly-versal left Ã5-torsor over an M -rational
surface.

The proof of Proposition 5.3 follows that of [JLY02, Theorem 2.3.7], and requires the
following lemmas. The proof of the first two lemmas may be skipped in a first reading.

The first lemma is a geometric reformulation of [DM03, Theorem 1, equivalence of (1)
and (4)], and is about extending splitting fields of generic polynomials to weakly versal
torsors.

Lemma 5.4 ([DM03, Theorem 1]). Let G a finite constant group over k and f(s, x) ∈
k(s)[x] a generic polynomial for G. Denote by L a splitting field of f(s, x) over k(s). Then,
the G-extension L/k(s) extends to a weakly versal left G-torsor Y → X, where X is an
open subset of A|s|k .

The proof of Lemma 5.4 given by DeMeyer and McKenzie in [DM03, Proof of Theorem 1]
is ring-theoretic in flavour. We supply a more geometric proof in Appendix A.

The next lemma ensures that twisted linear actions remain linear:

Lemma 5.5. Let G be a finite constant k-group, H a normal subgroup of G and σ ∈
Z1(k,G). Consider a left G-variety Y and a G-equivariant morphism Y → X, where G
acts trivially on X. Assume further that Y → X factors as Y → Z → X, where Z is a left
G/H-variety, Y → Z is H-equivariant, and Z → X is G/H-equivariant with G/H acting
trivially on X. Then:

(1) The σG-equivariant morphism σY → X factors canonically as σY −→ τZ −→ X,
where τ is the 1-cocycle given by the composition of σ with the quotient morphism
G→ G/H. Furthermore, σY → τZ is H̃-equivariant, where H̃ is the k-form of H
defined as the image of σ by the map Z1(k,G) → Z1(k,Aut(H)) induced by the
conjugation morphism G→ Aut(H). If moreover Y → X, Y → Z and Z → X are
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respectively a G-torsor, an H-torsor, and a G/H-torsor, then any of the previous
twisted maps is also a torsor.

(2) Let V be a k-vector space on which G acts faithfully on the left, and assume further
that the factorisation Y → Z → X is V → V/H → V/G. In the notation of (1), if
σ ∈ Z1(k,G), then σV is a k-vector space on which σG acts faithfully and linearly. In
particular, the action of H̃ on σV is also faithful and linear, so that σV →σ (V/H)

is a versal H̃-torsor over an irreducible open subscheme of σ(V/H).

Proof. For the proof of (1), the canonical factorisation of σY → X comes from the very
definition of the contracted product. Since H̃ is a subgroup of σG, it acts on σY and the
map σY (k)→ X(k) is H̃(k)-equivariant compatibly with the action of Γk.

Let us now prove (2). First note that the twisted form σV of the k-vector space V
corresponds to a class in H1(k,GL(V )). Since the latter classifies k-vector spaces which
are geometrically isomorphic to V , it ensures that σV is naturally endowed with a k-vector
space structure. Furthermore, after twisting the action morphism a : G ×k V → V , one
gets an action b : σG×k σV → σV . Geometrically, b corresponds to a morphism σG(k)→
GL(σV )(k) which is compatible with the Γk-action. It thus descends to a morphism σG→
GL(σV ) which defines b. This proves that σG acts linearly on σV . The last part of the
statement is inferred by H̃ being a subgroup of σG. �

The proof of Proposition 5.3 uses the following setting. By [JLY02, §2.2, Proposi-
tion 2.3.8], the polynomial

f(s, u, x) = x5 + sx3 + u(x+ 1) ∈ k(s, u)[x],

where s, u and x are indeterminates, is a generic polynomial of S5 over Q, hence over k.
Denote by L a splitting field of f over k(s, u). The genericity of f ensures that L/k(s, u) is
an S5-extension. We thus have the following tower of field extensions

k(s, u) ⊆ k(s, u,
√

discf) ⊆ L

where L is an A5-extension of k(s, u,
√

discf). By Lemma 5.4, this tower of fields can be
extended to morphisms of schemes

Y → Z → X

where Y → X is a weakly versal left S5-torsor, Z = Y/A5 and X is an open subset of A2
k.

The following lemma first ensures that Y → X is a strongly-versal S5-torsor.

Lemma 5.6. For any vector space V endowed with a faithful left linear action of S5, there
exists an S5-equivariant dominant rational map V 99K Y .

Proof. Let t be the map V → V/S5. There exist an integral open subset U of V/S5 such
that, after setting W = t−1(U), the restriction of t to W is an S5-torsor. Since Y → X
is weakly versal, one may assume, after shrinking U , that there exist S5-equivariant maps
r : W → Y and b : U → X such that the following diagram is cartesian:
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W Y

U X

r

b

.

It remains to show that the map b is dominant, which then implies that so is r. Indeed,
otherwise the closure B of the image of b is of dimension 0 or 1. If it were of dimension 0,
then b is constant. Since U(k) 6= ∅, this would mean that B is a rational point of X, so
that the S5-torsor YB → B corresponds to a Galois extension of fields with group S5.
Furthermore, the versality of the S5-torsor W → U would imply that YB → B is versal so
that the trivial S5-torsor over k is a pullback of YB → B. In particular, YB consists in a k-
point, hence YB → B is the identity morphism of Spec(k), which can not be. Furthermore,
if B were of dimension 1, then the curve C := Y ×X B would be dominated by W . It
would thus be unirational, hence rational by the combination of [Kol02, Lemma 2.3] and
Lüroth’s theorem [Coh91, §4.6, Theorem 6.8]. But C → B being an S5-torsor, this supplies
an embedding

S5 ↪−→ Aut(C/B) = Aut(k(C)/k(B)) = PGL2(k(B)).

Nevertheless, as k(B) is of characteristic 0, there is no such embedding by [Bea10, Intro-
duction]1. From this, one eventually deduces that B = X, so that b is dominant. �

We can now give a proof of Proposition 5.3:

Proof of Proposition 5.3. Let M/k be a finite extension, (aσ) ∈ Z1(M,S5) and Ã5 the M -
form of A5,M associated to the 1-cocycle (aσ). Let V be an M -vector space on which S5

acts faithfully on the left. Now, Lemma 5.6 supplies an S5-equivariant dominant rational
map V 99K Y . This yields a commutative diagram of rational maps:

V Y

V/A5 Z

V/S5 X

α

A5 A5

β

C2 C2

where every horizontal map is dominant, α (resp. β) being S5-equivariant (resp. A5-
equivariant) and each vertical map is a left torsor under the constant M -group written on
its left. Using Lemma 5.5, one may twist such a diagram via the cocycle (aσ), which ensures

1See also [DKLN21, Corollary 1.3] for an explicit list of 1-parameter generic polynomials over fields of
characteristic 0.
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a commutative diagram of rational maps

(5.2)

Ṽ Ỹ

Ṽ /Ã5 Ỹ /Ã5

V/S5 X

α̃

Ã5 Ã5

β̃

C2 C2

where each vertical map is a left torsor under the M -group written on its left. Moreover,
any horizontal map of (5.2) is still dominant and α̃ (resp. β̃) is S̃5-equivariant (resp.
C2-equivariant). Now, part (2) of Lemma 5.5 ensures that Ṽ is an M -vector space on
which Ã5 acts faithfully and linearly. Thus, the dominance of α̃ yields the strong versality
of the Ã5-torsor Ỹ → Ỹ /Ã5.

To see that Z̃ := Ỹ /Ã5 is M -rational, note that Z̃ is none other than the twisted form
of the C2-torsor Z → X via the image (aσ) ∈ Z1(M,C2) of the 1-cocycle (aσ) ∈ Z1(M,S5)
induced by the quotient map S5 → S5/A5 = C2. The 1-cocycle (aσ) then corresponds
to an extension M(

√
α)/M for some α ∈ M . By the very definition of twisted forms, the

function field of Z̃ is then the fixed subring of M(s, u,
√

discf) ⊗M(s,u) M(s, u,
√
α) under

the action of C2. If
√
α ∈M the action of C2 is trivial, so that

(5.3) M(Z̃) = M(s, u,
√

discf)⊗M(s,u) M(s, u,
√
α) = M(s, u,

√
discf).

Let us now compute M(Z̃) when
√
α 6∈ M . For this purpose, using the proof of [JLY02,

Theorem 2.3.7], we have

disc(f) = (108s5 + 16s4u− 900s3u− 128s2u2 + 2000su2 + 3125u2 + 256u3)u2

from which we deduce that disc(f) has odd degree. In particular, α.disc(f) 6∈ (M(s, u)×)2

so that

(5.4) M(Z̃) =
(
M(s, u,

√
discf)⊗M(s,u) M(s, u,

√
α)
)C2

= M
(
s, u,

√
α.disc(f)

)
by the following simple lemma:

Lemma 5.7. If k(
√
α)/k (resp. k(

√
β)/k) is a quadratic extension on which C2 acts

by mapping
√
α (resp.

√
β) to −

√
α (resp. −

√
β), then under the diagonal action of C2

on k(
√
α)⊗k k(

√
β), the k-algebra

(
k(
√
α)⊗k k(

√
β)
)C2 of fixed elements may be described

as follows: (
k(
√
α)⊗k k(

√
β)
)C2

=

{
k(
√
αβ) if αβ 6∈ (k×)2

k × k otherwise.

The simple proof of the lemma is postponed to the end of the section. Thus, by compar-
ing (5.3) and (5.4), unconditionally on α ∈M we have that:

M(Z̃) = M
(
s, u,

√
α.disc(f)

)
.
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It is thus enough to show thatM
(
s, u,

√
α.disc(f)

)
isM -rational. Indeed, following the

proof of [JLY02, Theorem 2.3.7], one has:

disc(f) = (108s5 + 16s4u− 900s3u− 128s2u2 + 2000su2 + 256u3 + 3125u2)u2

= 1
55

(
(55v + P )2 − 4(9− 20w)Q2

)
s10

where P = 1000w2 − 450w + 54, Q = (9− 20w)(1− 5w), v = u2/s5 and w = u/s2. Hence,

5

(
25
√

disc(f)

s5Q

)2

=

(
55v + P

Q

)2

− 4(9− 20w)

which, after multiplying by α, leads to

5

(
25
√
α.disc(f)

s5Q

)2

= α

(
55v + P

Q

)2

− 4α(9− 20w).

Thus, after setting A :=
25
√
α.disc(f)

s5Q
and B := 55v+P

Q , one gets

(5.5) 5A2 = αB2 − 4α(9− 20w).

The definition of A and B ensures that M(s, u,
√
α.disc(f)) ⊇M(A,B). Furthermore, the

reverse inclusion holds since w ∈M(A,B) by (5.5), and hence v ∈M(A,B) by the definition
of B. But then s = w2/v and u = s3v/w are in M(A,B). In particular

√
α.disc(f) ∈

M(A,B) by the very definition of A, and hence M(s, u,
√
α.disc(f)) = M(A,B) is M -

rational. �

Proof of Lemma 5.7. If αβ 6∈ (k×)2, then k(
√
αβ) is a k-subalgebra of dimension 2 of

k(
√
α)⊗k k(

√
β) fixed by C2. Since the k-algebra

(
k(
√
α)⊗k k(

√
β)
)C2 is of dimension 2,

this proves the statement in that case.
Now, if αβ ∈ (k×)2, then k(

√
β) = k(

√
α), from which one infers that k(

√
α)⊗k k(

√
β) =

k(
√
α)× k(

√
α) on which C2 acts diagonally, so that

(
k(
√
α)⊗k k(

√
β)
)C2 = k × k. �

6. Application to Grunwald problems for some non-solvable groups

When k is a number field, let us recall that the (BM) property for finite k-groups is
a widely open question. In Section 6.1, we provide a criterion for an extension of finite
k-groups to verify (BM). Afterwards, in Section 6.2, we combine the results of previous
sections with Theorem 6.1 to infer a proof of Theorem 1.1, which supplies new families of
non-solvable groups verifying (BM). Eventually, Section 6.3 is dedicated to reviewing the
non-solvable groups with cardinality at most 500 for which (BM) holds.

6.1. Extensions of groups verifying (BM). The proof of the criterion is similar to the
proof of [Har07, Théorème 1], where Harari proves the case of a split exact sequence with
abelian kernel. Our statement extends the latter:
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Theorem 6.1. Let k be a number field and consider a short exact sequence of finite algebraic
k-groups:

(S) 1 N E Q 1.

Assume (BM) holds for Q and for every homogeneous space X of SLr,k admitting a point
x ∈ X(k) whose stabiliser S satisfies S(k) ' N(k). Assume further that one of the following
conditions is satisfied:

(i) for every field extension K/k, assume that X(K) 6= ∅ for every homogeneous space
X of SLr,K admitting a point x ∈ X(K) whose stabiliser S satisfies S(K) ' N(K);

(ii) the exact sequence (S) is split.
Then E verifies (BM).

Proof. First choose an embedding of E (resp. Q) in SLm (resp. SLn) and if (S) splits, fix a
section σ : Q→ E of (S) and replace the embedding ofQ by the embedding: Q

σ
↪−→ E ↪−→ SLn

to assume m = n in this case. Consider the projection morphism p : SLm × SLn → SLn.
The algebraic group E acts on the right on SLn via Q, which induces a diagonal action
of E on the right on SLm × SLn. Then, p is a (right) E-equivariant morphism, so that it
induces a morphism

f : (SLm × SLn)/E → SLn/E = SLn/Q.

Let us apply the fibration method [Har07, Théorème 3] to f . For this purpose, we verify
that f satisfies the following conditions:

(a) the base variety SLn/Q verifies (BM);
(b) any fibre of f over a rational point verifies (BM);
(c) the generic fibre of f is unirational.

First note that (a) holds by assumption. For (b), fix a point x of SLn/Q, denote by κ its
residue field, and let us describe X := f−1(x). For this purpose, first note that SLm acts
on the left on (SLm × SLn)/E with h ∈ SLm acting on the class of (a, b) ∈ SLm × SLn by
h.(a, b) := (ha, b). Moreover, when letting SLm act trivially on SLn/Q, the morphism f is
SLm-equivariant. In particular, this induces a left action of SLm,κ on X. Now, let κ be an
algebraic closure of κ and choose s ∈ SLn(κ) a representative of the class x ∈ SLn(κ)/Q(κ).
Then X(κ) is the subset of (SLm(κ)×SLn(κ))/E(κ) consisting of classes of elements of the
form (g, s) with g ∈ SLm(κ). Since h ∈ SLm(κ) maps the class of (g, s) to that of (hg, s),
the action of SLm(κ) on X(κ) is transitive, so that X is a homogeneous space of SLm,κ.

Besides, the stabiliser of the class of (1, s) consists of elements h ∈ SLm(κ) for which
there exists e ∈ E(κ) such that (h, s) = (e, se). As E acts on SLn via Q, this equality
holds if and only if e ∈ N(κ), i.e. if and only if h ∈ N(κ). From this, we deduce that the
stabiliser of the class of (1, s) is N(κ), and hence X(κ), endowed with its SLm(κ)-action,
is isomorphic to SLm(κ)/N(κ).

Thus, if x is a rational point of SLn/Q, then f−1(x) is a homogeneous space of SLm
whose geometric stabilisers are isomorphic to N(k). Moreover, such homogeneous space
verify (BM) by assumption, so that (b) is verified.
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To verify (c) holds, first assume that (i) holds. If x is the generic point of SLn/Q, then
we deduce from assumption (i) that the SLm-homogeneous space f−1(x) (whose geometric
stabiliser is isomorphic to N(k)) has a rational point. If y is such a rational point and S
denotes its stabiliser, it induces an isomorphism SLm/S

∼−→ f−1(x) defined by mapping the
class of g ∈ SLm to g.y. After composing with the quotient map SLm → SLm/S, we obtain
a dominant map SLm → f−1(x), so that f−1(x) is unirational.

Now, assume that (ii) holds. Since (S) splits, the choice of embeddings we made in the
beginning of the proof ensures that the diagonal embedding SLn → SLn×SLn = SLm×SLn
is right E-equivariant. It thus induces a morphism SLn/E → (SLn × SLn)/E which is a
section of f . In particular, the generic fibre of f has a rational point. The previous
paragraph thus implies that the generic fibre of f is unirational.

We may now apply [Har07, Théorème 3] to deduce that (SLm × SLn)/E verifies (BM),
but it remains to verify that it is stably birational to SLm/E. For this purpose, denote by
q : SLm×SLn → SLm the projection morphism, which is E-equivariant with respect to the
right E-actions, so that it induces a quotient map g : (SLm × SLn)/E → SLm/E. First
note that since E acts freely on SLm × SLn, then the following diagram, whose horizontal
maps are the canonical quotient maps, is cartesian:

SLm × SLn (SLm × SLn)/E

SLm SLm/E

p f .

Since the map SLm → SLm/E is fppf, we deduce from this diagram that g is a SLm-torsor
for the fppf topology, hence for the Zariski topology by [Mil80, Proposition 4.9] (which is
stated with GLm although the proof is the same with SLm). In other words, the SLm-
torsor g is locally trivial for the Zariski topology, yielding the claim. �

6.2. Proof of Theorem 1.1. Let us start by the following theorem, which is a combination
of Proposition 2.6 with Corollaries 4.2 and 5.2. It gives the geometric nature of homogeneous
spaces of SLr whose geometric stabilisers are products of alternating and symmetric groups.

Theorem 6.2. Let k be a field, X a homogeneous space of SLr,k and x ∈ X(k). Denote
by N the stabiliser of x.

(1) If there exist distinct positive integers n1, . . . , ns 6∈ {2, 6} and t1, . . . , ts ∈ N such
that

N(k) '
s∏
i=1

Sti
ni
,

then X is stably rational.
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(2) If k is of characteristic zero and if there exist distinct positive integers n1, . . . , ns 6∈
{2, 6} and t0, . . . , ts ∈ N such that

N(k) ' At05 ×
s∏
i=1

Sti
ni
,

then X is retract rational.

Proof. Let us first prove (1). By Proposition 2.6, there exist a positive integer n, and SLn,k-
homogeneous spaces X1, . . . , Xs with points xi ∈ Xi(k) such that X is stably birational
to
∏s
i=1Xi and the stabilisers Gi(k) of xi are isomorphic to Sti

ni
for i = 1, . . . , s. Since

the ni’s are different from 2 and 6, Corollary 4.2 ensures that the Xi’s are stably rational.
Thus X is also stably rational.

To prove (2), Proposition 2.6 supplies a positive integer n and SLn,k-homogeneous
spaces X0, . . . , Xs such that X is stably birational to

∏s
i=1Xi, where the geometric sta-

bilisers of X0 (resp. Xi) is isomorphic to At05 (resp. Sti
ni

for all i ∈ {1, . . . , s}). Thus,
Corollary 5.2 ensures that X0 is retract rational and Corollary 4.2 ensures that the Xi’s are
stably rational for each i ∈ {1, . . . , s}, so that X is also retract rational. �

When combining Theorems 6.1 and 6.2, we get a proof of Theorem 1.1:

Proof of Theorem 1.1. The assertion follows from Theorem 6.1 once we verify its assump-
tion (i) holds. Indeed, by (2) of Theorem 6.2, every homogeneous space of SLr,k, r ≥ 1

with geometric stabiliser N(k) is retract rational, so that the Brauer-Manin obstruction to
weak approximation is the only one on it as in §2.3, showing that (i) holds. �

6.3. The (BM) property for "small" non-solvable groups. In this section, we com-
bine our results with those in the literature to review the non-solvable groups of order at
most 500 for which (BM) is known. We encapsulate this in the following proposition.

Proposition 6.3. Over any number field k, the (BM) property holds for every finite non-
solvable group whose cardinality is at most 500, except perhaps for those appearing in Ta-
ble 6.1.

To describe the groups in Tables 6.1 we use the following notations. For finite groupsG,H
and Q, we write G = H oQ for a semidirect product of Q by H, and G = H.Q when G is
a non-split extension of Q by H. Let Dn = CnoC2 denote the dihedral group of order 2n.
Let Q8 denote the quaternion group, that is, the unique non-split extension of C2 by C4.
Let GL2(Fq), SL2(Fq), PGL2(Fq), and PSL2(Fq) denote respectively the 2 × 2 general,
special, projective general, and projective special linear groups over Fq.

Order Magma ID Non-solvable groups for which (BM)
is a priori unknown

240
240,89 CSU2(F5) = C2.S5

240,93 C4.A5
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336
336,114 SL2(F7)
336,208 PGL2(F7)

360 360,118 A6

480

480,218 GL2(F5)
480,219 C2

2 .S5

480,221 C8.A5

480,946 C4.S5

480,947 C4.S5

480,948 C4.S5

480,949 C2 × CSU2(F5)
480,953 C2

2 .S5

480,955 C2 × (C4.A5)
480,957 D4.A5

480,959 Q8.A5

Table 6.1: List of non-solvable groups with cardinality at
most 500 for which (BM) is unknown

The proof of Proposition 6.3 makes use of Theorem 1.1, Harari’s theorem [Har07, Théorè-
me 1] on split extensions of groups verifying (BM) by abelian groups, and a theorem of Plans
on the field of invariants of double covers of symmetric groups [Pla09, Theorem 11]:

Tool A ([Har07, Théorème 1]). Given a split short exact sequence of finite groups

1 A E G 1

with A abelian and G verifying (BM), the group E also verifies (BM).

Tool B ([Pla09, Theorem 11]). Let n ≥ 3 be an odd integer and identify Sn−1 with the
subgroup of Sn fixing n. Consider a positive integer r and an exact sequence of groups:

1 Cr2 H Sn 1π

such that the center of H contains Cr2 . If we denote by E the inverse image of Sn−1 by π,
then H verifies (BM) if and only if E verifies (BM).

Tool C. Finite products of finite groups verifying (BM) also verify (BM).

We also use the following results regarding the rationality of fields of invariants:

Reminder 6.4. The following properties hold over Q:
• All symmetric groups Sn have stably rational fields of invariants.
• The alternating group A5 has stably rational fields of invariants by [Mae89].
• The group GL2(F3) has stably rational fields of invariants by [Pla07b].
• The group SL2(F5) has a generic polynomial by [Pla07a].
• The simple group GL3(F2) ' PSL2(7) has stably rational fields of invariants by
[Mes05, Théorème 3].
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• The quaternion group Q8 has stably rational fields of invariants by [Grö34].
In particular, all these groups verify (BM).

Proof of Proposition 6.3. To prove the statement, we run the following algorithm, both by
hand and using Magma, over the non-solvable groups of cardinality ≤ 500. To go over
the list by hand, we use the online database of Dokchister [Dokb], where the groups are
listed via their Magma ID in the "Small Groups Library" of Magma. Our list is ordered by
increasing Magma ID.

Step 1. Following this order, determine all the groups G for which (BM) follows from
Tool A, Tool C and Reminder 6.4 by looking at all the short exact sequences in which (I) G
fits in the middle, the kernel is abelian, and (BM) is known for the quotient by the reminder,
or (II) G is the product of two groups for which (BM) is known, one factor by the reminder
and the other either by tool A or the reminder. The code in [BN, "nonsolvable" code file]
outputs the minimal non-solvable groups for which (BM) remains unknown after ruling
out the groups in (I), that is, those which are not extensions of a smaller group by an
abelian kernel. For the smaller groups, (BM) follows from the reminder. One additional
group Q8 × A5 is then ruled out in (II) as the product of two groups for which (BM) is
known by Tool C.

Step 2. Out of the remaining 22 groups, we rule out two central extension H of S5, with
Magma IDs 240,90-91, using Tool B. For these, B yields an extension E for which (BM) is
known by the reminder and Proposition 7.4. We then rule out two more groups which are
the direct products of these groups with C2.

Step 3. Out of the remaining 18 groups, we use Theorem 1.1 to rule out two group
extensions, A5 oC8 and A5 oQ8 with kernel A5 and quotients satisfying (BM) by tools A
The remaining 16 groups appear in Table 6.1. �

Remark 6.5. Using Tool B, we further reduce the verification of (BM) for the following
groups to verifying (BM) for solvable groups of smaller order. We shall see in Section 7
that (BM) holds for these groups under Schinzel’s hypothesis H.

• The groups with Magma ID 240, 89 and 480, 949 satisfy (BM) if and only if the
solvable group with Magma ID 48, 28 verifies (BM);
• The group with Magma ID 480, 219 satisfies (BM) if and only if the solvable group
with Magma ID 96, 66 verifies (BM);
• The group with Magma ID 480, 953 satisfies (BM) if and only if the solvable group
with Magma ID 96, 190 verifies (BM).

7. Metabelian stabilisers and Grunwald problems for small solvable
groups

Throughout this section k is a number field. In the first part of this section, we prove
that the Brauer-Manin obstruction to weak approximation is the only one for homogeneous
spaces of SLn,k whose geometric stabiliser has derived subgroup C2, under Schinzel’s hy-
pothesis (H), and hence deriving Theorem 1.2. In Section 7.3 we make use of Theorem 1.2



HOMOGENOUS SPACES WITH NON-SOLVABLE STABILISERS 28

and the results of Harari [Har07] and Harpaz-Wittenberg [HW20] to list the finite groups
of order at most 191 for which (BM) is unknown.

7.1. Homogeneous spaces with metabelian stabilisers. The following is the main
theorem on homogeneous spaces whose derived geometric stabilisers is C2:

Theorem 7.1. Let k be a number field, X a homogeneous space of SLn,k and x ∈ X(k).
Assume that the stabiliser G of x is a finite algebraic k-group, and assume further that
G′ = C2. If Schinzel’s hypothesis (H) holds, then the Brauer-Manin obstruction to weak
approximation is the only one on X.

Let us recall that a reduced variety X over a field k is said to be split if it contains an
irreducible component which is geometrically irreducible [Sko96]. If L/k is a field extension,
one says that X is split by L if X ⊗k L is split. Equivalently, this means that there exists
an irreducible component Y of X such that the algebraic closure of k in k(Y ) embeds in L.

Throughout the section we denote by Π1
ét(X,x), for any geometric point x ∈ X(k), the

following short exact sequence of profinite groups (see [Gro03, Théorème 6.1]):

1 π1
ét(X ⊗k k, x) π1

ét(X,x) Γk 1.

In addition, we recall that if S is a k-group of multiplicative type and Ŝ its dual, then an
S-torsor f : Y → X is called universal if the homomorphism Ŝ(k) → Pic(Xk), mapping
a character χ : Sk → Gm,k to the image of f by the pushfoward map χ∗ : H1(Xk, Sk) →
H1(Xk,Gm) = Pic(Xk), is an isomorphism (see also [Sko01, p.25]).

Proof of Theorem 7.1. Assume that X(kΩ)Brun 6= ∅. Since SLn,k is semisimple, Rosenlicht’s
lemma ensures that k[Xk]

× = k
×. Furthermore, by [HW20, §5.2], one has Pic(Xk) =

Hom(Gab(k), k
×

) so that Pic(Xk) is finite. Thus, [Sko01, Proposition 6.1.4] ensures that
there exists a universal left D-torsor f : Y → X in the sense of [CTS87, §2] and [Sko01,
Definition 2.3.3], where D(k) is the Cartier dual of Pic(Xk), hence D(k) = Gab(k) so that D
is a finite abelian group. In particular, D is an algebraic group of multiplicative type and
from [HW24, Lemma 3.8] one infers that D fits in a short exact sequence

1 D T Q 1

where T is a torus and Q a quasi-trivial torus.
As in §2.2, let TY be the quotient of T×Y under the diagonal action of D defined for any

point d in D by (t, y) 7→ (td−1, d.y), and denote by T f : TY → X and p : TY → Q the two
projections. In order to prove that the Brauer-Manin obstruction to weak approximation
is the only one for X, we are to apply the descent method for torsors under tori [HW20,
Corollaire 2.2] to the left T -torsor T f . For this purpose, let us fix σ ∈ Z1(k, T ), and let
us prove that the Brauer-Manin obstruction to weak approximation is the only one for the
twisted variety σ(TY ).

After twisting the morphism TY → Q by σ, one gets a morphism g : σ(TY ) → σQ.
Furthermore, since Q is quasi-trivial, Shapiro’s lemma combined with Hilbert’s theorem 90
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ensures that σQ ' Q, so that Q is an open subset of an affine space Ad
k. One may

then choose a smooth compactification Z of σ(TY ) such that g extends to a morphism
g : Z → Pd

k. Since σ(TY ) is an open subset of Z, it is enough to prove that the Brauer-
Manin obstruction to weak approximation is the only one for Z. We prove the latter by
applying the fibration method [Wit07, Chapitre 3, Corollaire 3.5] to the fibration g. Indeed,
the fibres of g are twists of f by an element of Z1(k,D), that is, they are universal D-torsors
over X. But [HW20, Corollaire 5.4] ensures that such universal torsors are homogeneous
spaces of SLn,K with geometric stabiliser C2. Thus, Lemma 7.2 below implies that the
smooth fibres of g over rational points of σQ have the weak approximation property, and
Lemma 7.3 below guarantees that the fibres of g over points of codimension one of Pd

k are
split by a quadratic extension. In other words, the assumptions of [Wit07, Chapitre 3,
Corollaire 3.5] are satisfied, when applied to the fibration g, yielding the statement. �

Lemma 7.2. Let V be an SLn,k-homogeneous space with geometric stabiliser C2. Then V
verifies weak approximation.

Proof. Let us first note that V verifies the Hasse principle. Indeed, assume that V has local
points and denote by v a geometric point of V . Note that Π1

ét(V, v) is isomorphic to

1 C2 π1
ét(V, v) Γk 1.

Since V has local points, the class [Π1
ét(V, v)] ∈ H2(k,C2) = 2Br(k) is mapped to the trivial

class in H2(kv, C2) = 2Br(kv) for each v ∈ Ωk. The Brauer-Hasse-Noether exact sequence
thus implies that [Π1

ét(V, v)] ∈ H2(k,C2) is trivial, so that Π1
ét(V, v) admits a section, which

means that V (k) 6= ∅ by [PS22, Theorem 7.6].
Thus, if V (kΩ) 6= ∅, one has V (k) 6= ∅, so that V ' SLn,k/C2. As A2

k/C2
∼= A2

k is stably
birational to V by Lemma 2.1, the variety V is then k-stably rational, hence verifies the
weak approximation property. �

Lemma 7.3. Let R be a discrete valuation ring, K its fraction field and κ its residue field.
Assume κ is of characteristic zero. Consider an SLn,K-homogeneous space V with geometric
stabiliser C2 and let V be a regular proper R-scheme. If the generic fibre of V contains V
as an open dense subscheme, then V ⊗R κ is split by a quadratic extension of κ.

Proof. First note that after replacing V by V ⊗R R̂, where R̂ denotes the completion
of R, one may assume that R is complete, so that R ' κJtK by [Ser62, Chapitre II, §4,
Théorème 2]. Denote by ∂R : H2(K,C2)→ H1(κ,C2) the Serre residue map [CTS21, §1.4.1]
and fix a geometric point v of V . Then the image of the class of Π1

ét(V, v) by ∂R corresponds
to a quadratic extension κ′/κ, and we are to prove that V ⊗R κ is split by κ′/κ.

Since R is henselian, [Mil80, Theorem II.3.10] ensures that H1(R,C2) = H1(κ,C2) so
that κ′/κ is the special fibre of an étale R-algebra R′. We replace V by V ⊗RR′ to assume
κ = κ′ and R = R′ and claim that V ⊗R κ is split. Since κ′ = κ, the class of Π1

ét(V, v)
has a trivial residue. Now, [Duc98, Théorème (b)] supplies a field extension λ of κ such
that κ is algebraically closed in λ and cd(λ) ≤ 1. Set S = λJtK, so that the R-algebra S is
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unramified. Furthermore, since κ is algebraically closed in λ, one may also assume, after
tensoring V by S/R, that R = S, i.e. that cd(κ) = 1.

Then, [Π1
ét(V, v)] ∈ H2(K,C2) = 2Br(K) having a trivial residue, [Gro68, Proposi-

tion (2.1)] ensures that it comes from an element of Br(R). But R being henselian, one infers
from [CTS21, Theorem 3.4.2 (i)] that Br(R) = Br(κ) where Br(κ) = 0 since cd(κ) ≤ 1.
Thus, the class of Π1

ét(V, v) in H2(K,C2) is trivial, which means that Π1
ét(V, v) has a section.

Hence [PS22, Theorem 7.6] ensures that V (K) 6= ∅, from which one gets that V ⊗R κ is
split, using [Sko96, Lemma 1.1 (b)]. �

7.2. Proof of Theorem 1.2. We can now combine Theorem 7.1 with Theorem 6.1 and
[HW24, Theorem 4.5] to supply a proof of Theorem 1.2.

Proof of Theorem 1.2. Assuming Schinzel’s hypothesis (H), Theorem 7.1 ensures that every
homogeneous space of SLr (r ∈ N) whose geometric stabiliser has derived subgroup C2

verifies (BM).
Let us first consider the case whereQ is supersolvable and choose an embedding E ↪−→ SLr.

Then, we may apply [HW24, Theorem 4.5] to the homogeneous space SLr/E and the
embedding N ⊆ E. Indeed, if x is chosen to be the class of 1 in SLr/E, then assumption (1)
of [HW24, Theorem 4.5] is fulfilled since the outer Galois action of Γk on E(k) factors
through the Galois action Γk, which is trivial. Assumption (2) in ibidem holds since E/N =
Q is supersolvable. Finally, by the first paragraph of this proof, (BM) holds for every
homogeneous space Y of SLr with geometric stabiliser N as required in (?) of ibidem.

Now assume that the sequence of the statement is split and Q verifies (BM). We may
then apply Theorem 6.1. For this purpose, first note that (ii) holds since the short exact
sequence of the statement splits. Furthermore, the assumptions of 6.1 preceding (i) and (ii)
are automatically satisfied since Q verifies (BM) and since every homogenous spaces with
geometric stabiliser isomorphic to N verifies (BM) by the first paragraph. �

7.3. The (BM) property for "small" solvable groups. Let us first state the main
result of this subsection:

Proposition 7.4. Let k be a number field. The (BM) property holds over k for every finite
group of cardinality at most 191, except perhaps for those appearing in Tables 7.1 and 7.2.
Furthermore, if one assumes that Schinzel’s hypothesis (H) holds, then the (BM) property
holds for every finite group appearing in Table 7.1.

To describe the groups in Tables 7.1 and 7.2 we use the notations from §6.3. Further,
let Dicn denote the unique non-split extension C2n.C2 where C2 acts on C2n by inversion.
For an odd prime p, let Hep denote the Heisenberg group, that is, the p-Sylow subgroup
of GL3(Fp). Let 21+2n denote an extraspecial group whose center has order 2, the quotient
being an elementary abelian group of rank 2n.

Order Magma ID Rewriting that allows to prove (BM) Method used to prove (BM),
using the rewriting
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48
48, 28 CSU2(F3) = Q8.S3 Theorem 1.2
48, 33 Q8.C6 Theorem 1.2

72 72, 3 Q8 o C9 Theorem 1.2

96

96, 3 (C2.C
2
4 ) o C3 Theorem 1.2

96, 66 Q8 o Dic3 Theorem 1.2
96, 67 Q8.Dic3 Theorem 1.2
96, 74 Q8.C12 Theorem 1.2
96, 188 C2 × CSU2(F3) Theorem 1.2 and Tool C
96, 190 Q8.D6 Theorem 1.2
96, 191 Q8.D6 Theorem 1.2
96, 192 Q8.D6 Theorem 1.2
96, 193 Q8.D6 Theorem 1.2
96, 200 C2 × (Q8.C6) Theorem 1.2 and Tool C
96, 201 Q8.(C2 × C6) Theorem 1.2
96, 202 Q8.(C2 × C6) Theorem 1.2

144

144, 31 Q8.D9 Theorem 1.2
144, 32 Q8 oD9 Theorem 1.2
144, 35 C2 × (Q8 o C9) Theorem 1.2 and Tool C
144, 36 Q8.C18 Theorem 1.2
144, 121 C3 × CSU2(F3) Theorem 1.2 and Tool C
144, 124 Q8.(C3 oS3) Theorem 1.2
144, 127 Q8.(C3 ×S3) Theorem 1.2
144, 157 C3 × (C4.A4) Theorem 1.2 and Tool C

160 160, 199 21+4 o C5 Theorem 1.2
Table 7.1: List of finite groups with order less than 191, for
which (BM) is known conditionally under Schinzel’s hypoth-
esis (H), but not unconditionally

Order Magma ID Groups for which (BM) is a priori unknown
108 108, 15 He3 oC4

Table 7.2: The only group of order less than 191 for
which (BM) is a priori unknown

To prove Proposition 7.4, we append to Tools A, B and C a result of Harpaz-Wittenberg:

Tool D ([HW20, Théorème B]). Any finite supersolvable group verifies (BM).
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We also use the fact that the solvable group SL2(F3) verifies (BM). The stable rationality
of its fields of invariants was proved by Rikuna in an unpublished paper. The retract
rationality of such fields was later published by Burdick and Jonker [BJ13, Theorem 3.6]:

Reminder 7.5 ([BJ13, Theorem 3.6]). The fields of invariants of SL2(F3) are retract rational.
In particular, SL2(F3) satisfies (BM).

Proof of Proposition 7.4. The proof is derived from Tools A, C, D, Reminders 6.4, 7.5 and
Theorem 1.2 as follows:
Step 1. In our Magma code [BN, "solvable" code file], we use the "Small Groups Library"
of Magma to produce the list of finite groups of cardinality at most 191 for which neither
Tool A nor Tool C nor Tool D might be used to prove (BM).
Step 2. For any of the Magma IDs of this list, we look at all the short exact sequences
in which the corresponding group fits in the middle, via an online database of Dokchis-
ter [Doka]. We then eliminate, by hand, all the groups among that list for which (BM) is
known unconditionally, via a combination of Reminders 6.4 and 7.5 with Tools A and C.
The remaining groups are listed in Tables 7.1 and 7.2.
Step 3. Eventually, we determine, among the remaining groups, those for which (BM)
modulo Schinzel’s hypothesis (H) can be proved using Theorem 1.2. The remaining group
is listed in Table 7.2. �

Appendix A. Geometric proof of Lemma 5.4

We include here a geometric proof of the equivalence of (1) and (4) in [DM03, Theorem 1],
that is, a proof of Lemma 5.4, of which we use the notations.

We start by setting K := k(s)[x]/f(s, x), A := k
[
s, 1

den(f).disc(f)

]
, X := Spec(A) and

Z := Spec(A[x]/f(s, x)). First note that since f is monic in x, the natural morphism
ϕ : Z → X is finite and flat. Besides, since X is an open subscheme of A|s|k where disc(f)
does not vanish, the fibres of f are étale. Thus f is flat with étale fibres, hence étale.
Letting k(s) be a separable closure of k(s), we denote by η : Spec(k(s)) → X the generic
point of X and η its composition with ζ : Spec(k(s)) → Spec(k(s)). From the following
cartesian diagram

Spec(K) Spec(A[x]/f(s, x))

Spec(k(s)) Spec(A)

ψ ϕ

η

one may then deduce a commutative diagram
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πét
1 (Spec(k(s)), ζ)

Sym(Zη)

πét
1 (X, η)

α

πét
1 (η)

β

where α denotes the action of πét
1 (Spec(k(s)), ζ) on the fibre of ψ over Spec(k(s)) and β

the action of πét
1 (X, η) on the fibre Zη. Since the G-extension L/k(s) is the Galois closure

of K/k(s), the image of α is a group that may be identified with G. The surjectivity
of πét

1 (η), which comes from the normality of X [Gro03, Exposé V, Proposition 8.2], thus
ensures that the image of β is also G. Thus, there exists a Galois G-cover Y → X which
factors through ϕ.

To prove that ϕ is weakly versal, let E/M be a G-extension of fields whereM contains k.
Since f(s, x) is a generic polynomial for G over k, there exists a ∈ M |s| such that f(a, x)
is irreducible, disc(f).den(f) does not vanish on a and such that E is a splitting field
of f(a, x) over M . Hence a ∈ X(M), and we are to verify that F := a ×X Y is Spec(E).
Choose M a separable closure of E, so that the morphisms Spec(M) → Spec(E) and
Spec(M) → Spec(M) will both be denoted by ξ. Furthermore, we set a := a ◦ ξ. We thus
have a commutative diagram

πét
1 (Spec(M), ξ) πét

1 (X, a) πét
1 (X, η)

G G

Sym(Spec(M [x]/f(a, x))) Sym(Za) Sym(Zη)

πét
1 (a)

γ

∼

∼

∼

where the right part of the diagram is given by the choice of a path between a and η
and the left part by functoriality of the étale fundamental group. But since the étale
finite cover Y → X corresponds to the morphism πét

1 (X, η) → G, the commutativity
of the previous diagram ensures that the G-cover F → a corresponds to the morphism
πét

1 (Spec(M), ξ)
γ−→ Im(γ). Now, when identifying πét

1 (Spec(M), ξ) with ΓM , one may
check that the image of γ is isomorphic to the group G. The Galois extension E/M thus
corresponds to the subsequent morphism πét

1 (Spec(M), ξ) → G, from which one deduces
that F = Spec(E).
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