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Abstract. We solve a problem of Davenport–Lewis–Schinzel, originating in the 50’s,
concerning the reducibility of separated polynomials, in the absence of indecomposable
factors of degree ≤ 4. Consequences are derived to the finiteness problem for Hilbert’s
irreducibility theorem (a.k.a. Hilbert–Siegel problem), to stability in arithmetic dynamics,
and to functional equations in rational functions.

1. Introduction

Reducibility of polynomials is a central topic of interest in number theory, cf. [Sch00]. In
a prominent paper from 1963, Schinzel poses nine problems concerning reducibility of poly-
nomials. The first three were described by Zannier [Sch07, Part E] as “substantial, involving
several mathematical fields” due to the intimate relation to polynomial monodromy. The
second problem was solved by Fried [Fri86], cf. [CNC99], while the third problem concern-
ing the reducibility of separated polynomials f(x1, . . . , xm)− g(y1, . . . , yn) ∈ Q[x1, . . . , yn]
was reduced to the first problem by Davenport and Schinzel [DS64]. As we shall see below,
the first problem, also known as the Davenport–Lewis–Schinzel (DLS) problem1, arises nat-
urally in several topics including the finiteness problem for Hilbert’s irreducibility theorem
(a.k.a. the Hilbert–Siegel problem), low degree points in fibers of polynomial maps, sta-
bility in arithmetic dynamics, functional equations, intersections of lemniscates [Pak23a],
expanding polynomials [Tao12, Tao15], and sum-product estimates [BT12, Thm. 6, proof].

The DLS problem is deceptively easy to state:
“For which polynomials f, g ∈ C[x] \ C, is f(x)− g(y) ∈ C[x, y] reducible?”

A trivial source for reducible pairs arises when f = g, in which case f(x) − f(y) has
a diagonal factor x − y. Further examples (f, g) = (T4,−T4) were given by Davenport,
Lewis, and Schinzel [DLS61], where Tn is the degree-n Chebyshev polynomial satisfying
Tn(x + 1/x) = xn + 1/xn. Soon after, examples where deg(f) = deg(g) is either 7 or
11 were given by Birch. There has been an extensive work on the problem from the 50’s
to the 60’s, see Cassels [Cas70]. Eventually, when f, g are indecomposable polynomials
(i.e., cannot be written as a composition of two polynomials of degree > 1), the cases
where f(x) − g(y) ∈ C[x, y] is reducible were classified by Fried [Fri86], and in particular
deg(f) = deg(g) is 7, 11, 13, 15, 21, or 31. The special indecomposable polynomials of these
degrees were then explicitely written by Müller [M9̈5], and Cassou-Noguès–Couveignes

1The problem is also named Schinzel’s problem in some papers, e.g. [Fri12]. It is first explicitely stated
in a paper of Davenport, Lewis and Schinzel [DLS61].
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[CNC99]. Further studies concern quadratic factors of f(x)−g(y) ∈ C[x, y] by Bilu [Bil99],
cf. [KMS07]; the cases g = cf , c ∈ C by Avanzi–Zannier [AZ03]; the case g = α ◦ f , for
degree-1 α ∈ C[x] by Fried and Gusić [Fri12, FG12]; the case where f(x) = g(y) has a
component of genus ≤ 1 by Zieve et al., cf. [Zie12]; and the case where f is a composition
of polynomials with nonsolvable monodromy [KN24]. However, the problem remains open
for decomposable polynomials.

In this paper, we develop and use results concerning solvable monodromy groups of de-
composable polynomials in order to solve the DLS problem and consequently make signifi-
cant advances on the above mentioned topics. For this working draft, we avoid composition
factors of degree ≤ 4 for one of the polynomials:

Theorem 1.1. Let f, g ∈ C[x] be polynomials of degree > 1 such that f does not factor
through a nonlinear polynomial of degree ≤ 4. Then f(x) − g(y) is reducible in C[x, y] if
and only if one of the following occurs for some polynomials f1, g1 ∈ C[x]:

(1) f and g have a common composition factor h ∈ C[x] of degree at least 2, that is,
f = h ◦ f1 and g = h ◦ g1;

(2) f = µ ◦ h1 ◦ f1 and g = µ ◦ h2 ◦ g1, for some linear µ ∈ C[x], where (h1, h2) is one
of the pairs of polynomials of degrees 7,11,13,15,21,31 given in [CNC99, §5].

In future versions, we shall remove the assumptions on factors of f . The new methods
introduced deal with polynomials with solvable monodromy. For such poynomials Theo-
rem 1.1 is a special case of Theorem 3.1. The general case, proved in §5.1, is based on
the combination of these new methods, with the older methods [KN24] for nonsolvable
monodromy. The theorem applies over arbitrary fields of characteristic 0.
We next discuss the consequences to the above-mentioned topics:
Reducible fibers and the Hilbert–Siegel problem. For a degree-d polynomial f ∈ Q[x], con-
sider its fibers f−1(a) ⊆ C over rational points a ∈ Q, and more specifically, the degrees
[Q(α) : Q] of preimages α ∈ f−1(a). For a ∈ Q, say that the fiber f−1(a) over a is
irreducible 2 if the degree [Q(α) : Q(a)] attains its maximal value d for (all) α ∈ f−1(a).

Hilbert’s Irreducibility Theorem (HIT) asserts the existence of infinitely many a ∈ Z
such that f−1(a) is irreducible. The finiteness problem, a.k.a. the Hilbert–Siegel problem3,
asks to determine, up to a finite set, the set of integral exceptions for Hilbert’s theorem:

Redf (Z) := {a ∈ Z | f−1(a) is reducible over Q}.

Clearly, Redf (Z) contains every integer in f(Q), and furthermore every integer in f1(Q)
for a decomposition f = f1 ◦ f2 in Q[x] with deg(f1) > 1. The problem is then to de-
termine whether Redf (Z) \

⋃
f1(Q) is finite, when f1 runs through left factors of f . For

indecomposable polynomials f ∈ Q[x] of degree > 5, the finiteness of Redf (Z) \ f(Q) was
shown by Fried [Fri74, Fri86], cf. [M9̈9], and examples of degree-5 polynomials f ∈ Q[x]
for which this set is infinite were constructed by Dèbes–Fried [DF99]. For compositions f

2Equivalently, f−1(a) is irreducible if it is irreducible as a scheme over SpecQ(a), or simply if f(x)−a ∈
Q(a)[x] is reducible.

3The name first appeared in [Fri86], cf. [DF99].
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of polynomials in Q[x] with nonsolvable monodromy and any indecomposable left factor
f1 of f , the set Redf (Z) \ f1(Q) is also finite by [KN24].

The problem is closely related to the DLS problem: For, as in the proof of HIT, it reduces
to determining the values sets g(Q) for which g(Q) ∩ Redf (Z) is infinite, or equivalently
to determining when is the curve f(x) = g(y) is reducible for a rational function g ∈
Q(x) whose value set g(Q) contains infinitely many integers, a.k.a. a Siegel function. For
polynomial g ∈ Q[x], this is equivalent to the reducibility of f(x)−g(y) ∈ Q[x, y], a rational
version of the DLS problem.

Variants of the problem where f : X → P1
Q is a degree-d map from a (smooth projective)

curve X of positive genus were also considered. In the general case, where the monodromy
group is Sd, Redf (Z) is in fact finite, see Müller [M9̈9], and [M0̈2] for other cases. The
finiteness of the analogous set Redf (Q) recently arose in the context of algebraic points of
fixed degree d in fibers of maps f : X → P1

Q over rational points, as considered by Derickx–
Rawson [DR25]. However, the original Hilbert–Siegel problem has remained open.

The above work on the DLS problem and solvable monodromy groups led us to the
following theorem, bringing us close to the solution of the Hilbert–Siegel problem:

Theorem 1.2. Let f ∈ Q[x] \ Q be a nonlinear polynomial such that f does not factor
through an indecomposable of degree ≤ 6. Then Redf (Z) is the union of

⋃
f1
(f1(Q) ∩ Z)

with a finite set, where f1 ∈ Q[x] runs through all (nonlinear) indecomposable left factors
f = f1 ◦ h, h ∈ Q[x], of f .

This is proved in Section 5.2 with an approach that applies over general number fields.

Stability in arithmetic dynamics. Stability of polynomials under iterates is a main topic in
arithmetic dynamics, see [BIJ+19, §19]. A polynomial f ∈ Q[x] is called stable over a ∈ Q,
if the fibers over a of the n-fold iterates f◦n := f ◦ · · · ◦ f are irreducible for all n ∈ N.
In particular, it is natural to ask whether for some n ∈ N, there could be infinitely many
a ∈ Z over which the fibers of f◦n are reducible, but those of f◦n−1 aren’t. In other words,
when is Redfn(Z) \ Redfn−1(Z) infinite? As a direct consequence of Theorem 1.2, there
are no such polynomials f admitting no indecomposable factor of degree ≤ 6:

Corollary 1.3. Let f ∈ Q[x] be a polynomial of degree > 1 that does not factor through
an indecomposable of degree ≤ 6. Then Redfn(Z) \ Redf (Z) is finite.

A natural arising open problem is to determine the exceptional polynomials f (with a
factor of degree 2, 3 or 4) for which Redfn(Z) \ Redf (Z) is infinite for some n ≥ 2 and for
which n is this possible.

Functional equations. For polynomials f, g ∈ C[x], the solutions to the functional equation
(1.1) f(X(z)) = g(Y (z))

in polynomials X,Y ∈ C[z] are known by Ritt’s theorems, cf. [ZM08]. Avanzi–Zannier
[AZ01] raise the problem of determining the solutions in rational functions X,Y ∈ C(z).

As for the DLS problem, this problem is partially motivated (cf. [DLS61], or [AZ01, Pg.
1]) by the question: when is f(Q) ∩ g(Q) (resp. f(Z) ∩ g(Z)) infinite for f, g ∈ Q[x]? Or



4 ANGELOT BEHAJAINA, JOACHIM KÖNIG, AND DANNY NEFTIN

equivalently, when does the curve f(x) = g(y) admit infinitely many rational (resp. integral)
points? The solution for integral points was given by Bilu–Tichy [BT00] and a solution for
rational points was announced by Zieve et al. in 2012, cf. [Zie12, DHH+12, CDH+12] but
have not yet appeared. By Faltings’ (resp. Siegel’s) theorem, such curves have a component
of genus ≤ 1 (resp. 0). The existence of genus-0 component is equivalent to the solvability
of (1.1) in X,Y ∈ C(z).

The problem naturally divides into two cases according to the reducibility of the curve
f(x) = g(y). Solutions in the irreducible case have appeared in various cases, see e.g.
[Pak10, Pak18, HT23]. However, with the exception of cases where f = cg for c ∈ C
[AZ03], or cases where the degree of one of the polynomials is much larger than the other’s
[Pak23b, Thm. 1.3] or [Fri23], little has appeared in the literature on the reducible case.

Our solution to the DLS problem gives a simple approach to the reducible case. In
particular, the following consequence of Theorem 1.1 and [AZ03] shows that when f(x) =
g(y) is reducible, f, g have to factor over C, in a certain way, through xn or Tn or few
sporadic polynomials. Note that given f, g ∈ C[x] and X,Y ∈ C(z) satisfying (1.1), one
obtains other solutions (w ◦ f)(X(z)) = (w ◦ g)(Y (z)) by composing with w ∈ C[z]. To
avoid these trivial extra solutions, call (f, g) a minimal pair admitting a solution f(X(z)) =
g(Y (z)), X,Y ∈ C(z)\C if there is no w ∈ C[X] of degree> 1 such that f = w◦f1, g = w◦g1
such that (f1, g1) also has a solution f1(X1(z)) = g1(Y1(z)), for some X1, Y1 ∈ C(z) \ C .

Corollary 1.4. Suppose f, g ∈ C[x] is a minimal pair admitting a solution f(X(z)) =
g(Y (z)) for some X,Y ∈ C(z) \ C, and that f(x) − g(y) ∈ C[x, y] is reducible. Assume
further that f does not factor through an indecomposable polynomial of degree ≤ 4. Then
one of the following holds for some µ, u, v ∈ C[x] with deg(µ) = 1:

(1) f = µ ◦ xn ◦ u and g = µ ◦ xn ◦ v for n ≥ 2;
(2) f = µ ◦ Tn ◦ u and g = µ ◦ Tn ◦ v for n ≥ 2;
(3) f = µ ◦ Pi ◦ u and g = µ ◦ Pi ◦ v, for i ∈ {1, 2, 3}, where P1(x) = xa(x − 1)b for

coprime a, b, and P2, P3 are the (degree 5 and 7) polynomials from [AZ03, Def. 2.1].
(4) f = µ◦h1 ◦u and g = µ◦h2 ◦v, where {h1, h2} is among one of the pairs of degree-7

or degree-13 polynomials appearing in §5.1 or §5.3, resp., of [CNC99].

The corollary is proved in Section 5.3 and further restrictions on the shapes of the
involded decomposition are discussed after it.

Acknowledgments. The first and third authors were supported by the Israel Science Foun-
dation, grant no. 353/21. The first author is also grateful for the support of a Technion
fellowship, of an Open University of Israel post-doctoral fellowship, and of Labex CEMPI
(ANR-11-LABX-0007-01).

2. Basic setup and Preliminaries

Let k be a field of characteristic 0. In the whole paper, all groups actions are left actions.
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2.1. Monodromy groups. A map f : X → Y defined over k is a finite (dominant and
generically unramified) morphism of (smooth irreducible projective) varieties defined over
k. This induces a field extension k(X )/k(Y) via the pullback f∗ : k(Y) → k(X ), given by
h 7→ h ◦ f . The degree deg(f) of f is then defined as [k(Y) : k(X )].

Let f : X → Y be a map of degree d defined over k. The monodromy group Monk(f)
of f is Gal(Ω/k(Y)), where Ω is the Galois closure of the extension k(X )/k(Y). It is a
permutation group of degree d, via the action on the generic fiber of f , or equivalently
via the action on the roots of a minimal polynomial for k(X ) over k(Y). If f = f1/f2
is a rational map for coprime f1, f2 ∈ k[X], then Monk(f) is just the Galois group of
f1(X)− tf2(X) ∈ k(t)[X].

When X and Y are geometrically irreducible, letting fk : X ⊗k k → Y ⊗k k be the
map induced by f over k, the geometric monodromy group Monk(fk) = Gal(Ωk/k(X )) is
isomorphic to the image of the action of the étale fundamental group πét

1 (Y \Br(f)) on the
fiber f−1(y0) of a base point y0 ∈ Y(k) over which f is unramified, that is, the classical
definition of monodromy.

Let f, g ∈ k(X) \ k. We say that f and g are linearly related over k, and denote f ∼k g,
if there exist µ, ν ∈ k(X) of4 degree 1 such that f = µ ◦ g ◦ ν. Note that the degree of
f ∈ k(X) \ k is max{deg(f1), deg(f2)}, where f = f1/f2 for coprime f1, f2 ∈ k[X].

Note that every polynomial f ∈ k[X] \ k with cyclic monodromy group is well known
to be linearly related to Xn. We call such polynomials cyclic. Similarly, every polynomial
f ∈ k[X] \ k with dihedral monodromy group is linearly related over k to a Chebyshev
polynomial of degree n = deg(f) [ZM08, Lemma 3.3], that is, the unique degree n polyno-
mial Tn for which Tn(X + 1/X) = Xn + 1/Xn. We call such polynomials dihedral. Note
that for both cyclic and dihedral polynomials f of degree n, the group Monk(f) contains
a regular cyclic group Cn of order n, and hence Monk(f) is isomorphic (as a permutation
group) to a subgroup of AGL1(n) = Z/no (Z/n)×, that is, the holomorph of Cn.

Note that more generally, every indecomposable polynomial f of degree p ≥ 5 with
solvable monodromy group is of prime degree and is either cyclic or dihedral, so that
Monk(f) embeds in AGL1(p) and its action is equivalent to the action on Fp. Finally, note:

Remark 2.1. For any prime p, every intransitive subgroup U ≤ AGL1(p) fixes a point5.
For p = 2, the claim holds trivially. Now assume that p is odd. Then we can write
U = 〈U ∩ Fp, (a, b)〉, for some σ = (a, b) ∈ Fp o F×

p . By the intransitivity of U , we have
U ∩ Fp = 0. Since U 6= 1, it follows that b 6= 1. Therefore, U fixes a/(1− b) ∈ Fp.

Moreover, if n is a composite number and U is an intransitive subgroup of AGL1(n),
then there exists a divisor d|n which is either prime or equal to 4, such that U projects
to an intransitive subgroup of AGL1(d). Indeed, this is the group-theoretical wording of
what is commonly known as Capelli’s lemma.

2.2. Polynomial decompositions. Recall that the monodromy group Monk(f) of a com-
position f = g ◦ h of two maps g : Y → P1, h : X → Y is a subgroup of A o B := Ad o B,

4called also a linear fractional.
5Here, AGL1(p) can be more generally replaced by a Frobenius group.
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where A := Monk(h); B := Monk(g); d = deg(g); and B acts on Ad by permuting the d
copies. In particular, B is a natural quotient of Monk(f). Letting B act on the set of roots
B of a minimal polynomial of k(Y)/k(t), the stabilizer of a block b ∈ B is the subgroup of
Monk(f) fixing b under its action through B. The block kernel is the kernel of the action
of Monk(f) on B. Letting Ω′ ⊆ Ω be the Galois closures of g∗, and f∗, resp., the block
kernel coincides with Gal(Ω/Ω′), while the block stabilizer coincides with Gal(Ω/k(t, b)),
where k(t, b) is the conjugate of K(Y) corresponding to b.

For polynomial decompositions, Abhyankar’s lemma implies the block kernel is nontriv-
ial, see e.g. [KN24, Lemma 2.8]. To be more precise, we have:
Lemma 2.2. Suppose f = g ◦ h ∈ k[X] \ k with deg(f), deg(g) ≥ 2. Then the order of the
block kernel K = ker(Monk(f) → Monk(g)) is divisible by deg(h).
Proof. Let x be a root of f(X) = t and let w = h(x). Denote by Ω/k(t) the Galois closure of
k(x)/k(t). Note that ΩK/k(t) is the Galois closure of k(w)/k(t). By Abhyankar’s lemma
and the ramification index at ∞, the extensions ΩK/k(w) and k(x)/k(w) are linearly
disjoint. Therefore deg(h) = [k(x) : k(w)]|[Ω : ΩK ] = |K|. □

Recall [ZM08, Theorem 2.1.]:
Theorem 2.3 (Ritt’s first theorem). Let f ∈ k[X] be a polynomial of degree ≥ 2. Consider
two complete decompositions6 U and V of f . Then there exists a finite sequence S of com-
plete decompositions of f such that U ,V ∈ S and every pair of consecutive decompositions
in S are Ritt neighbors7.

The following result, which relates decompositions over k and decompositions over k, is
based on Ritt’s first theorem, and follows from [FM69]:
Theorem 2.4 (Fried–MacRae). Suppose f = f1 ◦ · · · ◦ fr ∈ k[X] \ k for indecomposable
polynomials fi ∈ k[X] (1 ≤ i ≤ r). Then there exist linear polynomials ℓ1, . . . , ℓr−1 ∈ k[X]
such that g1 = f1 ◦ ℓ1 ∈ k[X], gr = ℓ−1

r−1 ◦ fr ∈ k[X] and gi = ℓ−1
i−1 ◦ fi ◦ ℓi ∈ k[X] for all

2 ≤ i ≤ r − 1. In this case, we have f = g1 ◦ · · · ◦ gr.
2.3. Reducibility. Given f, g ∈ k(X)\k, the curve f(X) = g(Y ) is birational to the fiber
product of P1#f,gP1 of f : P1 → P1 and g : P1 → P1. Moreover, this fiber product is
irreducible over k if and only if the root fields k(x) and k(y) of f(X) − t ∈ k(t)[X] and
g(Y )− t ∈ k(t)[Y ], resp., are linearly disjoint over k(t).

In particular, if the curve f(X) = g(Y ) is reducible, then f ◦ u(X) = g ◦ v(Y ) is
reducible for every u, v ∈ k(X) \ k. Thus, the Davenport–Lewis–Schinzel problem reduces
to classifying the pairs f, g ∈ k(X) \ k that are minimally reducible:

6A complete decomposition of f is a decomposition f = f1 ◦ · · · ◦ fr for indecomposable polynomials
f1, . . . , fr ∈ k[X].

7Complete decompositions f = f1 ◦ · · ·◦fr and f = f̃1 ◦ · · ·◦ f̃r are Ritt neighbors if there exists 1 ≤ i < r
such that

• fj = f̃j for j ̸∈ {i, i+ 1}, and
• fi ◦ fi+1 = f̃i ◦ f̃i+1.
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Definition 2.5. We say that f, g ∈ k(X) \ k is a minimally reducible pair if f(X) = g(Y )
is reducible and f1(X) = g1(Y ) is irreducible for every decomposition f = f1 ◦ f2 and
g = g1 ◦ g2 such that deg(f1) < deg(f) or deg(g1) < deg(g).

Clearly every pair f, g for which f(X) = g(Y ) is reducible factors as f = f1◦f2, g = g1◦g2
for a minimally reducible pair f1, g1.

The following well known lemma shows that minimally reducible pairs have a common
Galois closure:

Lemma 2.6. Let f, g ∈ k(X) \k be a minimally reducible pair, and k(x) and k(y) the root
fields of f(X) − t and g(X) − t ∈ k(t)[X], resp. Then k(x)/k(t) and k(y)/k(t) have the
same Galois closure.

Proof. Suppose on the contrary k(y) is not contained in the Galois closure Ω of k(x)/k(t).
Since k(x) and k(y) are not linearly disjoint over k(t), so are k(x) and k(y)∩Ω by [KN24,
Lemma 2.11]. Since k(y)∩Ω = k(y1) is properly contained in k(y), we may write g = g1◦g2
for g1, g2 ∈ k(X) \ k with deg(g1) < deg(g) such that t = g1(y1) and y1 = g2(y). Thus,
g1, f is a reducible pair with deg(g1) < deg(g), contradicting the minimality of the pair
f, g. □
2.4. Wreath products of affine groups. For polynomial maps f, g ∈ k[X] of prime
degrees p and q resp., with solvable monodromy groups, we have Monk(f ◦ g) ≤ A o B,
where A ≤ AGL1(q) and B ≤ AGL1(p)

8. This section presents preliminary results on
subgroups of A oB for such A,B and firstly on normal subgroups of Ap:

Lemma 2.7. Let Cp � H ≤ AGL1(p) properly contain Cp, and n ∈ N. Then every
epimorphism ψ : Hn ↠ H factors through the projection to one of the n coordinates.

Proof. Since gcd(p, p − 1) = 1, we have ψ(Cn
p ) = Cp. Viewing ψ as a surjective linear

functional on Fn
p = ⊕n

i=1Fpei, some direct summand Fpei is mapped onto Fp. Let πi :
Hn → H denote the projection to the i-th coordinate. Since ker(πi) and Fpei commute so
are their images, and hence elements of ker(πi) of order coprime to p have trivial ψ-images.

Now assume on the contrary that ψ(Fpej) = Cp for some j 6= i. Since every element in
ker(πj) of order coprime to p has trivial ψ-image, and since 〈ker(πi), ker(πj)〉 = Hn, every
element whose order is coprime to p has trivial ψ-image, contradicting the surjectivity of
ψ. Thus ψ(Fpej) = 1 for all j 6= i. Since in addition elements of ker(πi) of order coprime
to p have trivial ψ-image by the first paragraph, ψ factors through πi. □

We describe normalizers and commutator subgroups of transitive subgroups of G :=
AGL1(q) o AGL1(p) as follows. For C,H ≤ G, let NC(H) denote the elements of C nor-
malizing H, and [C,H ] ≤ G the commutator subgroup.

Proposition 2.8. For primes p, q, let 〈H,σ〉 ≤ AGL1(q) oCp be a subgroup, where H ≤ Cp
q

is σ-invariant: Hσ = H, and σ is a lift of Cp of order p or pq with σp ∈ H. Then 1)
[H : [H, 〈σ〉]] | q, and 2) [NCp

q
(〈H,σ〉) : H] | q.

8More precisely, we can take A = Monk(g) and B = Monk(f).
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If I ≤ H is a σ-invariant subgroup such that 〈H,σ〉/I is abelian, then 3) [H : I] | q. In
particular, if 〈H,σ〉 is abelian, then 4) |NCp

q
(〈H,σ〉)| | q2.

Proof. The conjugation by σ induces an automorphism σ ∈ Aut(Cp
q ) of order p, which

endows Cp
q with an Fq[σ]-module structure. Note that Fq[σ] ' Fq[x]/(x

p − 1) via x 7→ σ,
and that Cp

q = Fq[σ]e is a cyclic Fq[σ]-module generated by e := (1, 0, . . . , 0). Thus, Cp
q

is a quotient of the free module Fq[σ] of rank 1. Since both have the same cardinality, it
follows that Cp

q
∼= Fq[σ] as an Fq[σ]-module. Henceforth, we identify Cp

q with Fq[σ] under
this isomorphism. Therefore H is a submodule of the form gFq[σ], where g ∈ Fq[σ] divides
the characteristic polynomial σp − 1.

To see 1), note that, in Fq[σ], the element [g, σ] = gσg−1σ−1 = g(σ · g−1) ∈ H identifies
with g − σg = −(σ − 1)g ∈ Fq[σ]. Thus, [H, 〈σ〉] identifies with (σ − 1)gFq[σ]. Since the
latter is an Fq-subspace of codimension at most 1 in gFq[σ], we obtain [H : [H, 〈σ〉]] | q.

To prove 2), we first claim that N = NCp
q
(〈H,σ〉) is also invariant under σ. Indeed, let

u ∈ N . Then uσ−1u−1 = hσk for some h ∈ H and k. Considering the projection on Cp,
we get k = −1 + pr for some r ≥ 0. Hence, we have

σuσ−1u−1 = (σhσ−1)σpr ∈ Hσpr= H.

Since H ≤ N (as Hσ = H), we obtain σuσ−1 ∈ Hu ⊂ N , proving the claim. It follows that
H ≤ N ≤ Cq

p is an Fq[σ]-submodule, so that N = fFq[σ] for some f | g ∈ Fq[σ]. Since N
normalizes 〈H,σ〉, we have [N , 〈σ〉] ⊆ H. As in the proof of (1), [N , 〈σ〉] = (σ − 1)fFq[σ],
so that the inclusion [N , 〈σ〉] ⊆ H implies g | (σ−1)f . From (σ−1)fFq[σ] ≤ H = gFq[σ] ≤
N = fFq[σ] and [Fq[σ] : (σ − 1)Fq[σ]] | q, we deduce that [N : H] | q.

To see 3), note that [H, 〈σ〉] ≤ I ≤ H, so that [H : I] | [H : [H, 〈σ〉]] and the latter
divides q by 1).

To see 4), pick I = 0, so that the combination of 2) and 3) gives:
|NCp

q
(〈H,σ〉)| = [NCp

q
(〈H,σ〉) : H] · |H| | q2.

□
Lemma 2.9. Let K ≤ AGL1(p)

n such that each component projection contains Cp. Then
soc(K) = K ∩ Cn

p .

Proof. Since K is solvable, soc(K) is the direct product of elementary abelian q-subgroups
Hq for various primes q. Since the component projections of each Hq are abelian normal
subgroups of AGL1(p), i.e., are contained in Cp, it follows that Hq = 1 for every q 6= p, so
soc(K) ⊆ K ∩ Cn

p . For the converse inclusion, note that K ∩ Cn
p is a semisimple module

under the action of K/(K∩Cn
p ), meaning that the submodule soc(K) has a complement N ,

which is in particular normal in K. By the definition of the socle, this implies N = {1}. □
2.5. A lemma on Siegel functions. Let k be a number field with ring of integers Ok and
φ : X → P1

k a map defined over k. By a famous theorem of Siegel, if φ(X ) ∩Ok is infinite,
then firstly, X is birational to P1

k (i.e., φ is given by a rational function f ∈ k(X)), and
furthermore |φ−1(∞)| ≤ 2. When k = Q, it is furthermore necessary for the preimages of
∞ to be algebraically conjugate. Motivated by this, we call a rational function f ∈ k(X)
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over an arbitrary field k of characteristic zero a Siegel function, if |f−1(∞)| ≤ 2, and for
k = Q, we call f a Siegel function over Q, if additionally either |f−1(∞)| = 1 or the two
preimages of ∞ are algebraic conjugates. The following lemma describes Siegel functions
that factor through solvable polynomials.

Lemma 2.10. Let q ≥ 3 be a prime. Let U ∈ k[X] be of degree ≥ 2, let V ∈ {Xq, Tq} and
let ℓ ∈ k(X) be a linear fractional. Assume that U ◦ ℓ ◦ V is a Siegel function.

(1) If V = Xq, then ℓ = aX+b
X for some a ∈ k, b ∈ k

×, or ℓ is a linear polynomial. In
the former case, (U ◦ ℓ ◦ V )(1/X) = U ◦ (bX + a) ◦ V .

(2) If V = Tq and q ≥ 5, then ℓ is a linear polynomial.

Proof. (1) Assume V = Xq. Since q ≥ 3, we have |V −1(c)| ≥ 3 for all c ∈ k
×. Hence

ℓ−1(∞) ∈ {0,∞}, which implies that ℓ(X) = aX+b
X for some a ∈ k, b ∈ k

×, or that
ℓ is a linear polynomial. In the former case, we have ℓ ◦ V ◦ (1/X) = a + bXq =
(bX + a) ◦ V , giving the second equality.

(2) Assume V = Tq. Since q ≥ 5, we have |V −1(c)| ≥ 3 for all c ∈ k. Hence ℓ−1(∞) =
∞, so ℓ is a linear polynomial.

□

2.6. Composition of two indecomposable solvable polynomials. Our method for
proving Theorem 1.1 relies on the ’largeness’ of the monodromy groups of solvable poly-
nomials:

Theorem 2.11. Assume that k = k. Suppose h ∈ k[X] \ k (resp., g ∈ k[X] \ k) is linearly
related over k to Xp or Tp (resp., Tq or Xq) for primes p, q ≥ 3. Assume g ◦h is not related
over k to Xpq or Tpq. Then, the block kernel Γ = ker(Monk(g ◦ h) → Monk(g)) contains
Cq
p . Moreover:

(1) If h is linearly related over k to Xp, then Γ = Cq
p .

(2) If h is linearly related over k to Tp, then either Γ = Dq
p or

Γ =
{
(a1, . . . , aq) ∈ Dq

p | a1 · · · aq ∈ Cp

}
.

The proof of the above theorem is given in Section 4.

3. Reducing the solvable case of Theorem 1.1 to length 2 compositions

Let k be a field of characteristic 0. In this section, we focus on the solvable case of
Theorem 1.1, while the nonsolvable case will be discussed in Section 5.

Theorem 3.1. Let k be a field of characteristic 0. Let f ∈ k[X] \ k be a polynomial with
solvable monodromy group such that deg(f) is coprime to 6, and let g ∈ k(Y )\k be a Siegel
function of degree at least 2. Then f(X) = g(Y ) is reducible if and only if f and g have
a nontrivial common left composition factor, that is, f = h ◦ f1 and g = h ◦ g1 for some
h, f1 ∈ k[X] and g1 ∈ k(X) such that deg(h) > 1.
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3.1. Diagonality of the kernel. Recall that a subgroup D of a power Br, r ≥ 1, is a
diagonal subgroup if each of its r projections to B is injective. We start with the following
key theorem showing that the block kernel is diagonal for minimally reducible pairs:

Theorem 3.2. Suppose that an odd degree polynomial f ∈ k[X] and a Siegel function
g ∈ k(X) form a minimally reducible pair, and that f = h◦fr for indecomposable fr ∈ k[X]
of degree pr with solvable monodromy Monk(fr). Then the kernel K := ker(Monk(f) →
Monk(h)) is a diagonal subgroup of Monk(fr)

deg(h) with | soc(K)| = pr.

We shall need the following lemma:

Lemma 3.3. Suppose that f ∈ k[X] and g = γ1/γ2 ∈ K(X) form a minimally reducible
pair for coprime γ1, γ2 ∈ k[X]. Write f = h ◦ fr and g = g1 ◦ g2 for indecomposable fr
and deg(g2) > 1, and assume Monk(fr) is solvable with pr := deg(fr) 6= 4. Then the fiber
product P1#g,hP1 → P1 of g and h factors through f , so that pr | deg(g2).

Equivalently, letting x, y be the roots of f(X) − t and γ1(X)− tγ2(X) ∈ k(t)[X], resp.,
and u = fr(x), there exists a k(t)-conjugate x0 of x such that k(x0) ⊆ k(u, y). Furthermore,
x0 can be chosen as a k(u)-conjugate of x.

Proof. Let v = g2(y). Recall that since f and g is a minimally reducible pair, k(x) and
k(v) (resp., k(y) and k(u)) are linearly disjoint over k(t). Let Ω0/k(u, v) (resp., Ω̃/k(u, v))
be the Galois closure of k(v, x)/k(u, v) (resp., k(u, y)/k(u, v)). Since k(u, v) and k(x) are
linearly disjoint over k(u), we may identify Gal(Ω0/k(u, v)) with a subgroup of Monk(fr).
Since fr is indecomposable of degree 6= 4 with solvable monodromy, as in Section 2, these
subgroups identify with subgroups of AGL1(pr), where pr = deg(fr) is prime. Since pr is
prime and k(v, x)/k(u, v) and k(u, y)/k(u, v) are not linearly disjoint, we have k(v, x) ⊆ Ω̃

and hence Ω0 ⊂ Ω̃. Since the image of Gal(Ω̃/k(u, y)) in Gal(Ω0/k(u, v)) ≤ AGL1(pr) is
intransitive, Remark 2.1 gives a root x0 of fr(X)−u fixed by this image. This root is a k(u)-
conjugate of x that is contained in k(u, y), yielding the desired inclusion k(v, x0) ⊆ k(u, y).
As k(u, y) is the compositum of the linearly disjoint extensions k(y)/k(t) and k(u)/k(t), it
is the function field of the fiber product of g and h, so that the inclusion k(x0) ⊆ k(u, y)
implies that this fiber product factors through f . Moreover, since x0 ∈ k(u, y), the degree
pr = [k(x0, v) : k(u, v)] divides [k(u, y) : k(u, v)] = [k(y) : k(v)] = deg(g2).

Ω0 Ω̃

k(x)

pr fr

k(v, x)

pr

k(u)

h

k(u, v) k(u, y)

k(t)
g1

k(v)
g2

k(y)
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□
In the setup of Theorem 3.2, we get:

Corollary 3.4. Let Ω be the common Galois closure (obtained by Lemma 2.6) of f(X)− t
and G(X) := γ1(X)− tγ2(X) ∈ k(t)[X], where g = γ1/γ2 for coprime γ1, γ2 ∈ k[X]. Then
Ωsoc(K)(y) = Ω for a root y of G(X).

Note that group theoretically, the equality Ωsoc(K)(y) = Ω means that V := Gal(Ω/k(y))
and soc(K) generate a subgroup isomorphic to a semidirect product soc(K)o V .
Proof. As noted in Section 2, since fr are indecomposable of degree pr 6= 4 and solvable
monodromy group, pr is prime and Γr = Monk(fr) embeds into AGL1(pr). Letting Gr−1 :=
Monk(h), we may identify Monk(f) as a subgroup of AGL1(pr) o Gr−1. Moreover, letting
Ωr−1 be the splitting field of h(X)− t, we see that K = Gal(Ω/Ωr−1), and that pr | |K| by
Lemma 2.2. Since the projections of K ≤ Γ

deg(h)
r to each of the coordinates are isomorphic

[KN24, Remark 3.2], this implies they all contain Cpr . Since soc(Γr) = soc(AGL1(pr)) =

Cpr , by Lemma 2.9, it follows that soc(K) = K ∩ Cdeg(h)
pr . Set Ω′ = Ωsoc(K).

Let x be a root of f(X)− t ∈ k(t)[X], and set u = fr(y) and k(v) = Ω′ ∩ k(y).
Ω

soc(K)

V K Ω′

��
��
��
��
��
��
��
��
��
��
��
��

Ωr−1

33
33

33
33

33
33

33
33

k(y)

g

EE
EE

EE
EE

k(x)
fr

yy
yy
yy
yy

f

k(v)

FF
FF

FF
FF

k(u)

h

xx
xx
xx
xx

k(t)

On the one hand, note that for any k(t)-conjugate u of u and roots x, x′ of fr(X)−u, we
have Ω′(x) = Ω′(x′): Indeed, since Ω′/k(t) is Galois (as soc(K) ≤ K is characteristic) and
Ω′ 6= Ω, we have k(x) 6⊂ Ω′, and hence Ω′/k(u) and k(x)/k(u) are linearly disjoint. This
implies that fr(X)−u is irreducible over Ω′. As soc(K) is abelian, Ω′(x)/Ω′ is Galois, and
hence Ω′(x) = Ω′(x′).

On the other hand, since k(y)/k(t) and k(u)/k(t) are linearly disjoint, h(X)− t remains
irreducible over k(y), and hence V := Gal(Ω/k(y)) acts transitively on the k(t)-conjugates
of u. To apply Lemma 3.3, note that k(y)/k(v) is nontrivial since Ω is the Galois closure
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of k(y)/k(t) and since Ω′ 6= Ω (as pr | soc(K)). Thus the lemma implies that some k(u)-
conjugate x0 of x is contained in k(y, u). Thus k(v, xσ0 ) ⊂ k(uσ, y) ⊂ Ω′(y), for every
σ ∈ V = Gal(Ω/k(y)). Combining this with the transitivity of V = Gal(Ω/k(y)), we see
that Ω′(y) contains all k(t)-conjugates of x, that is, Ω′(y) = Ω. □

To conclude Theorem 3.2, we need the following proposition and lemma:

Proposition 3.5. Let p be a prime and let h = u ◦ v : P1 → P1 be a composition of two
degree-p maps with solvable monodromy. Suppose that there exists a Galois map g : X̃ → P1

whose fiber product P1#h,gX̃ with h is irreducible, and that the pullback hg of h along g
has abelian monodromy group. Then the kernel K of the projection Monk(h) → Monk(u)
has a socle of cardinality at most p2.

Lemma 3.6. Let L/K and M/K be linearly disjoint extensions such that ML/L and L/K
are Galois. Then ML/K is Galois.

Proof. First note that, by linear disjointness, any σ ∈ Gal(L/K) extends to σ̃ ∈ Aut(ML/M) ≤
Aut(ML/K). Now we are going to prove that (ML)Aut(ML/K) = K, that is ML/K

is Galois. For that, let a ∈ (ML)Aut(ML/K). Since ML/L is Galois, we have a ∈
(ML)Gal(ML/L) = L. Moreover, for any σ ∈ Gal(L/K), we have σ(a) = σ̃(a) = a. As
L/K is Galois, we obtain a ∈ LGal(L/K) = K. Consequently (ML)Aut(ML/K) = K. □
Proof of Proposition 3.5. Let a be such that h(a) = t, that is, a root of h1(X)− th2(X) ∈
k(t)[X], where h = h1/h2 for coprime h1, h2 ∈ k[X]. Set b := v(a) and denote by k̃(a)/k(t)
(resp., k̃(b)/k(t)) the Galois closure of k(a)/k(t) (resp., k(b)/k(t)) and by k(X̃) the function
field of X̃. By assumption, k(a)/k(t) and k(X̃)/k(t) are linearly disjoint. Since k(a) ·
k(X̃)/k(X̃) is the function field extension corresponding to hg, and since Monk(hg) is
abelian, the extension is Galois and its group W = Gal(k(a)k(X̃)/k(X̃)) ' Monk(hg) is
abelian. Moreover, k(a)k(X̃)/k(t) is Galois by Lemma 3.6. Since it is Galois and contains
k(a), it also contains k̃(a) so that k̃(a)k(X̃) = k(a)k(X̃).

k̃(a) k̃(a)k(X̃)

k(a)

h

zzzzz
k(a)k(X̃)

W

k̃(b) k̃(b)k(X̃)

������������

k(b)

v

zzzzz
k(b)k(X̃)

OOOOOO

k(t)

u
g

k(X̃)

Since u, v have degree p and solvable monodromy groups, as in Section 2, we identify both
Monk(u) and Monk(v) as permutation subgroups of AGL1(p), so that Gal(k̃(a)/k(t)) ≤
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AGL1(p)oAGL1(p). Since [k(b)k(X̃) : k(X̃)] = p, the projection of the p-elementary abelian
group W ≤ AGL1(p) o AGL1(p) to AGL1(p) contains Cp. Since H = W ∩ AGL1(p)

p ≤ Cp
p

is the kernel of this projection and since p2 = [k(a)k(X̃) : k(X̃)] = |W |, we get |H| = p.
Since W◁Gal(k(a)k(X̃)/k(t)), the subgroup soc(K) also normalizes W in Monk(h). Hence,
| soc(K)| | p2 by Proposition 2.8.9 □

Lemma 3.7. Let f, g ∈ k(X) \ k be a minimally reducible pair such that f = f1 ◦ f2 for
f2 ∈ k(X) whose degree n is an odd composite number. Then f2 is not linearly related to
Tn or to Xn over k.

Proof. Suppose on the contrary that f2 is linearly related over k to Tn or Xn, so that
Monk(f1) ≤ AGL1(n). Suppose that x, y are such that f(x) = t and g(y) = t, that is, x, y
are roots of p1(X) − tp2(X), q1(X) − tq2(X) ∈ k(t)[X] resp., where f = p1/p2, g = q1/q2
for coprime p1, p2 ∈ k[X] and q1, q2 ∈ k[X], resp. Let u = f2(x), and Ω′ the Galois closure
of k(x)/k(u). Since k(y, u)/k(u) and k(x)/k(u) are not linearly disjoint, L = k(y, u) ∩ Ω′

is not linearly disjoint from k(x) over k(u). 10

Since n is composite, Remark 2.1 and the Galois correspondence imply there exists an
intermediate field k(u) ( L0 ( k(x) such that L/k(u) and hence k(y, u)/k(u) are not
linearly disjoint from L0/k(u), contradicting the minimal reducibility of f and g. □

Proof of Theorem 3.2. Retain the notation from the proof of Corollary 3.4. By definition
of k(v), we have [k(y) : k(v)] = | soc(K)| = pℓr for some ℓ ≥ 1. By assumption pr is odd.
Assume on the contrary that ℓ ≥ 2. Write v = v(y) for v ∈ k[y] (resp., v ∈ k(y) Siegel) and
consider a decomposition v = v1 ◦ · · · ◦ vm, for indecomposable vi ∈ k[X] (resp., functions
vi ∈ k(X) linearly related over k to Siegel functions), i = 1, . . . ,m. We claim that m = ℓ
and each vi (1 ≤ i ≤ r) is linearly related over k to Xpr or Tpr . If g is polynomial, this
follows from Ritt’s first decomposition theorem. If g is a Siegel function, then v is linearly
related to over k to a polynomial; indeed, letting g = h ◦ v for some h ∈ k(X) \ k and
λ ∈ g−1(∞), note that, since |v−1(λ)| ≤ 2, deg(v) is odd, and the ramification at ∞ for g
is odd, it follows that |v−1(λ)| = 1. Therefore, for every 1 ≤ i ≤ m, we have deg(vi) = pr
and vi is linearly related over k to Xpr or Tpr , so m = ℓ.

By Lemma 2.10, vm−1 ◦ vm is linearly related over k to U ◦ θ ◦ V , where θ is a linear
polynomial and U, V ∈ {Xpr , Tpr}. Let K ′ = ker(Monk(U ◦ θ ◦ V ) → Monk(U)). By
Proposition 3.5, | soc(K ′)| ≤ p2r . Hence, by Theorem 2.11, U ◦ θ ◦ V is linearly related
over k to Tp2r or Xp2r . Therefore vm−1 ◦ vm is linearly related to Xp2r or Tp2r over k, which
contradicts Lemma 3.7. Thus ℓ = 1, and soc(K) is diagonal. □

3.2. Relating the kernel to the two-step kernel. Theorem 3.2 is a contrast to Theorem
2.11 for compositions of two polynomials. The following relates the two relevant kernels:

9Note that W = ⟨H,σ⟩ for some σ such that Hσ = H, and that the projection of σ generates Cp.
10Indeed, if N/K and M/K are non-linearly disjoint finite separable extensions, then neither are N/K

and Ñ ∩M/K, where Ñ/K denotes the Galois closure of N/K.
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Proposition 3.8. Suppose f = h ◦ fr−1 ◦ fr for indecomposable fr−1, fr ∈ k[X] of prime
degrees pr−1 and pr, resp., and solvable monodromy. Let G = Monk(f), let K = ker(G→
Monk(f1 ◦ · · · ◦ fr−1)), let G = Monk(fr−1 ◦ fr) and let Gpr = G ∩ C

pr−1
pr . Then [Gpr :

soc(K)] | p2r, where soc(K) denotes the image of soc(K) in G.

Proof. Let X be the set of roots of f(X) − t in its splitting field Ω. Fix x ∈ X , and let
y := fr(x) and z := fr−1(y). Then G = Gal(Ω/k(t)) also acts on the sets Y,Z of conjugates
of y and z, resp. The kernels K,N of these actions on Y and Z, resp., are normal subgroups
of G which act on the block Xz = (fr−1 ◦ fr)−1(z). Thus, the images K,N of these actions
are normal subgroups of G ≤ AGL1(pr) oAGL1(pr−1). Since soc(K) = K ∩Cdeg(f1◦···◦fr−1)

pr

(by Lemma 2.9), the image soc(K) of its action on Xz is contained in Npr := N ∩ Cpr−1
pr .

We first claim that [Gpr : Npr ] | pr. Since fr−1 is a polynomial, ∞ is totally ramified
in k(y)/k(z), but is completely split in the extension of k(z) fixed by N as in Lemma 2.2.
Hence this fixed field and k(y) are linearly disjoint over k(z), so that N acts transitively
on the block f−1

r−1(z). Thus the image of N in Monk(fr−1) contains an element σ′ of order
pr−1. Let σ ∈ N be a lift of this element of order11 a power of pr−1 and σ its image in
N . Observe next that Gpr ≤ N

C
pr−1
pr

(〈Npr , σ〉): indeed for a ∈ Gpr , since N ◁ G, we have
aσa−1 ∈ N , so aσa−1σ−1 ∈ N∩Cpr−1

pr = Npr and aσa−1 ∈ 〈Npr , σ〉. Hence, by Proposition
2.8, we get

[Gpr : Npr ] | [NC
pr−1
pr

(〈Npr , σ〉) : Npr ] | pr, as claimed.

Finally, we claim that 〈σ,Npr〉/soc(K) is abelian, so that [Npr : soc(K)] | pr by Propo-
sition 2.8, and in total we have [Gpr : soc(K)] | p2r as needed. Since Monk(fr−1) ≤
AGL1(pr−1), the action of N/K on Y factors through AGL1(pr−1)

Z . Consider the projec-
tion π : N/K → N/K (where the latter acts on f−1

r−1(z) not necessarily faithfully), and
the preimage of NprK/K = Npr/soc(K)12 under π. Let W ≤ N/K denote a pr-Sylow
subgroup of this preimage, so that π(W ) = Npr/soc(K).

Assume first that pr 6= pr−1. Since Cpr−1 is normal in AGL1(pr−1), the commutator
[σ,w] ∈ N/K ≤ AGL1(pr−1)

Z is an element of order dividing pr−1 for every w ∈ W , and
hence π([〈σ〉,W ]) = [〈σ〉, Npr ] is a trivial subgroup of Npr/soc(K), so that 〈σ,Npr〉/soc(K)
is abelian, as claimed. Henceforth assume that pr−1 = pr = p. In this case 〈σ,W 〉 is
contained in the p-Sylow subgroup of AGL1(p)

Z and hence is abelian. Thus π(〈σ,W 〉) =
〈σ,Np〉/soc(K) is abelian as well, proving the claim.

□

3.3. Proof of Theorem 3.1. In the rest of the section, we prove Theorem 3.1 assuming
Theorem 2.11 whose proof will be provided in Section 4.

Proof of Theorem 3.1. Let f ∈ k[X] and g ∈ k(X) be a Siegel function as in Theorem 3.1.
We may assume that the pair f, g is minimally reducible.

11Such a lift can be of order pr−1 or p2r−1.
12Note that since K/ soc(K) is of order coprime to pr, clearly K ∩Npr = K ∩ C

pr−1
pr = soc(K).
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Now write f = f1◦· · ·◦fr for indecomposable polynomials fi ∈ k[X] with pi = deg(fi) ≥
5 a prime. Pick roots x and y of f(X)− t = 0 and g(Y )− t = 0, respectively. By Lemma
2.6, the extensions k(x)/k(t) and k(y)/k(t) have a common Galois closure Ω.

Assume on the contrary that r ≥ 2. Letting K = ker(Monk(f) → Monk(f1 ◦ · · · ◦ fr−1)),
we claim that p3r | | soc(K)|. Since by assumption pr 6= 2, Lemma 3.7 implies fr−1 ◦ fr is
not linearly related to Xprpr−1 or Tprpr−1 over k. Theorem 2.11 implies that the geometric
monodromy group Monk(fr−1 ◦ fr) ≤ AGL1(pr) oAGL1(pr−1) contains Cpr−1

pr and hence so
does G = Monk(fr−1 ◦fr) ≤ AGL1(pr) oAGL1(pr−1). Therefore, by Proposition 3.8, we get
p
pr−1−2
r | | soc(K)|, and so p3r | | soc(K)| since pr ≥ 5, proving the claim. This contradicts

Theorem 3.2 which gives | soc(K)| = pr.
Thus we get r = 1. In such case Monk(f) ≤ AGL1(p1) and hence k(y) contains a root

of f(X)− t by Remark 2.1, so that g factors through f as needed. □

4. Proof of Theorem 2.11

In this section, our aim is to prove Theorem 2.11. In §4.1, we begin by establishing
some necessary elementary results in linear algebra. In §4.2, we proceed with the proof of
Theorem 2.11.

4.1. Linear algebra lemmas. Let p, q ≥ 2 be prime numbers. Consider an Fp-vector
space

W = Fp · u0 ⊕ · · · ⊕ Fp · uq−1

of dimension q.

Lemma 4.1. Let A = {ai | i ∈ Fq} be a set of size q. Let i0 ∈ F∗
q and let ∅ 6= S ⊂ Fq be

such that, in the multiset
K = {as, as+i0 | s ∈ S},

each element appears exactly twice. Then S = Fq.

Proof. Observe that, for any s ∈ S, since as+i0 appears exactly twice in K, we have
s+ i0 ∈ S. Fix s0 ∈ S. By the observation above, s0, s0+ i0, s0+2i0, . . . , s0+(q−1)i0 ∈ S.
Since Fq = {s0, s0 + i0, . . . , s0 + (q − 1)i0}, we get S = Fq. □
Lemma 4.2. Assume p, q ≥ 3. Let i0 ∈ F∗

q and let ∅ 6= S ⊂ Fq. Then∑
s∈S

λs (us + us+i0) 6= 0,

for all (λs)s∈S ⊂ F∗
p.

Proof. Assume on the contrary that
(4.1)

∑
s∈S

λs (us + us+i0) = 0,

for some (λs)s∈S ⊂ F∗
p. Consider the multiset K = {us, us+i0 | s ∈ S}. From (4.1) and

the fact that {u0, . . . , uq−1} is an Fp-basis of W , each element in K appears exactly twice.
By Lemma 4.1, we get S = Fq. Using again (4.1), we deduce that λk = −λk−i0 , for all
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k ∈ S = Fq. Hence λ0 = (−1)qλ0−q·i0 = (−1)qλ0 = −λ0, so 2λ0 = 0. Since p is odd, we
get λ0 = 0, a contradiction. □

Lemma 4.3. Let i0 ∈ F∗
q and let ∅ 6= S ⊂ Fq be such that

(4.2)
∑
s∈S

λs (us + (p− 1)us+i0) = 0,

for some (λs)s∈S ⊂ F∗
p. Then S = Fq.

Proof. Consider the multiset K = {us, us+i0 | s ∈ S}. From (4.2) and the fact that
{u0, . . . , uq−1} is an Fp-basis of W , each element in K appears exactly twice. By Lemma
4.1, we obtain S = Fq. □

Lemma 4.4. Assume p = 2 and q ≥ 3. Let i0, j0 ∈ Fq be such that j0 6= 0 and i0 6= j0.
Let ∅ 6= S ⊂ Fq be such that

(4.3)
∑
s∈S

λs (us + us+i0 + us+j0 + us+i0−j0) = 0,

for some (λs)s∈S = 1. Then S = Fq.

Proof. For any k ∈ Fq, let wk = uk + uk+i0−j0 . Then we can rewrite (4.3) as

(4.4)
∑
s∈S

λs (ws + ws+j0) = 0.

Note that
(4.5) w0 + · · ·+ wq−1 = 0.

Moreover, by Lemma 4.3, any q−1 vectors from {w0, . . . , wq−1} are F2-linearly independent.
Assume on the contrary that there exists s0 ∈ S such that ws0 or ws0+j0 appears exactly

once in (4.4). Without loss of generality we may suppose that ws0 does. Then we get

(4.6) ws0 =
∑

s∈S\{s0}

(ws + ws+j0) + ws0+j0 .

Note that, in the RHS of (4.6), each vector appears at most twice, and that the writing

ws0 =
∑

i∈Fq\{s0}

wi

is unique in ⊕i∈Fq\{s0}F2 · wi. Hence, we conclude that, in (4.6), each vector appears
exactly once (since Fp = F2). This implies that 2(|S| − 1) + 1 = q − 1, and so q is even, a
contradiction. Consequently, each vector in (4.4) appears exactly twice. Applying Lemma
4.1 to the multiset K = {ws, ws+j0 | s ∈ S}, we obtain that S = Fq. □

Lemma 4.5. Assume p = 2 and q ≥ 3. Let v be a vector independent with u0, . . . , uq−1

over F2. Let i0 ∈ F∗
q. Then u0 + ui0 + v, . . . , uq−1 + uq−1+i0 + v are linearly independent

over F2.
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Proof. Assume on the contrary there exists ∅ 6= S ⊂ Fq and (λs)s∈S = 1 such that∑
s∈S

λs(us + us+i0 + v) = 0.

Then ∑
s∈S

λs(us + us+i0) = 0

and |S|v = 0. By Lemma 4.3, we have S = Fq. Since q is odd, we get v = 0 a contradiction.
Consequently u0 + ui0 + v, . . . , uq−1 + uq−1+i0 + v are linearly independent over F2. □

4.2. Proof of Theorem 2.11. Let k be an algebraically closed field of characteristic 0.
Suppose h ∈ k[X] \ k (resp., g ∈ k[X] \ k) is linearly related to Xp or Tp (resp., Tq orXq)
for primes p, q ≥ 2. Denote by Γ = ker(Monk(g ◦ h) → Monk(g)) the block kernel. To
prove Theorem 2.11, without loss of generality, we may assume that g ∈ {Xq, Tq} and that
h ∈ {ℓ ◦Xp, ℓ ◦ Tp} for some ℓ = aX + b ∈ k[X] \ k with a ∈ k∗ and b ∈ k.

Fix a compatible system of primitive roots of unity (ζm)m≥1 ⊂ k. For any group H and
n ≥ 1, denote by diag(Hn) the diagonal subgroup of Hn.

4.2.1. Assume g = Xq and h = ℓ ◦Xp. Without loss of generality, we may assume a = 1.

Proposition 4.6. We have:

Γ =

{
diag(Cq

p) if b = 0,

Cq
p otherwise.

Proof. Let K = k(y) where y = t1/q. Then the splitting field of f(X) − t over k(t) is
L = k(t)

(
w

1/p
j | j ∈ Fq

)
, where wj = ζjqy − b (j ∈ Fq). Viewing C = K×/(K×)p as

an Fp-vector space and letting O = 〈w0, . . . , wq−1〉Fp ≤ C , by Kummer theory, we have
dimFp(Γ) = dimFp(O).

Assume first that b = 0. Then w0 = · · · = wq−1 = y in C , which implies O = 〈y〉Fp , and
so dimFp(Γ) = dimFp(O) = 1. In addition, we have Γ = diag(Cq

p).
Assume next that b 6= 0. Since w0, . . . , wq−1 are Fp-linearly independent in C , we have

dimFp(Γ) = dimFp(O) = q, and so Γ = Cq
p .

L

k
(
w

1/p
0

) ooooooo

. . . k
(
w

1/p
q−1

)OOOOOOO

k(y) = K
Cp

NNNNN Cp

ppppp

k(t)

Cq

□
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4.2.2. Assume g = Tq and h = ℓ ◦Xp. Since the case g = T2 is covered by §4.2.1, we can
assume that q ≥ 3. Furthermore, without loss of generality, we may also suppose a = 1.

Proposition 4.7. We have

Γ =

{
diag(Cq

2) if p = 2 and b = ±2,

Cq
p otherwise.

Proof. Let K = k(y) where y ∈ k(t) satisfies t = yq + 1
yq . Then the splitting field of

Tq(X)− t over k(t) is k(y), and its roots are zi = ζiqy+
1

ζiqy
(i ∈ Fq). Moreover, the splitting

field of Xp − ℓ−1(zi) (i ∈ Fq) over k(zi) is Fi = k
(
(zi − b)1/p

)
. Hence, letting Ei = Fi(y)

(i ∈ Fq), the splitting field of f(X) − t over k(t) is L = E0 · · ·Eq−1. Below, we view
C = K×/(K×)p as an Fp-vector space.

L

E0 = F0(y)

iiiiiiiiiiii
. . . Eq−1 = Fq−1(y)

VVVVVVVVVVVVV

F0

qqqqqq
k(y) = K

Cp hhhhhhhhh
CpUUUUUUUU

Fq−1

QQQQQQQ

k(z0)

Cp
MMMMMM

C2

iiiiiiiiii
. . . k(zq−1)

C2

VVVVVVVVVVV
Cp mmmmmmm

k(t) = k
(
yq + 1

yq

)SSSSSSSSS
jjjjjjjjj

For i ∈ Fq, letting

ui = y − ζ−i
q

(
b+

√
b2 − 4

2

)
, vi = y − ζ−i

q

(
b−

√
b2 − 4

2

)
and wi = uiviy

p−1,

we have zi − b = wi in C, and so Ei = K
(
w

1/p
i

)
. Consider S1 = {ui | i ∈ Fq} and

S2 = {vi | i ∈ Fq}. We distinguish three cases:
Case 1: Suppose S1 ∩ S2 = ∅. Then u0, . . . , uq−1, v0, . . . , vq−1, y

p−1 are Fp-linearly
independent in C , and so are w0, . . . , wq−1. Hence, we get Γ = Cq

p .
Case 2: Suppose p ≥ 3 and S1∩S2 6= ∅. Assume first b = ±2. Then wi = u2i y

p−1 for all
i ∈ Fq. Since u20, . . . , u2q−1, y

p−1 are Fp-linearly independent in C , so are w0, . . . , wq−1, which
implies Γ = Cq

p . Assume now b 6= ±2. Then, there exists i0 ∈ F∗
q , such that vi = ui+i0 , for

all i ∈ Fq. By Lemma 4.2, u0v0, . . . , uq−1vq−1, y
p−1 are Fp-linearly independent in C , so

are w0, . . . , wq−1. Consequently we get Γ = Cq
p .



REDUCIBILITY OF SEPARATED POLYNOMIALS AND APPLICATIONS 19

Case 3: Suppose p = 2 and S1 ∩ S2 6= ∅. Assume first b = ±2. Then wi = y in C for
all i ∈ Fq, so Γ = diag(Cq

2). 13 Assume now b 6= ±2. Then, there exists i0 ∈ F∗
q , such that

vi = ui+i0 , for all i ∈ Fq. By Lemma 4.5, u0v0y, . . . , uq−1vq−1y are F2-linearly independent
in C , so are w0, . . . , wq−1. Consequently we get Γ = Cq

2 . □

4.2.3. Assume g = Xq and h = ℓ ◦ Tp. Since the case h = ℓ ◦ T2 is covered by §4.2.1, we
may suppose p ≥ 3. For n ≥ 2 and H ≤ AGL1(p), let

LH,n = {(ak)nk=1 ∈ Hn | a1 · · · an ∈ Cp} ,

Without loss of generality, we may assume that a = 1.

Proposition 4.8. We have

Γ =


diag(Dq

p) if q = 2 and b = 0,

LDp,q if b = 1+ζ
i0
q

−1+ζ
i0
q

for some i0 ∈ F∗
q ,

Γ = Dq
p otherwise.

Denoting by Dn
p ×C2 Dp the fiber product along the canonical epimorphisms Dn

p ↠
Dn

p /LDp,n = C2 and Dp ↠ Dp/Cp = C2, we shall use:

Lemma 4.9. LDp,n+1
∼= Dn

p ×C2 Dp.

Proof. This follows from LDp,n+1 = ((Dn
p \ LDp,n)× (Dp \ Cp)) ∪ (LDp,n × Cp). □

Proof of Proposition 4.8. Let K = k(y) where y = t1/q. For j ∈ Fq, letting uj = y+ (−b+
2)ζ−j

q , vj = y+(−b− 2)ζ−j
q and wj = ujvj , the field Fj = K(

√
wj) is the unique quadratic

subextension of the splitting field Ej of Tp − ℓ−1(ζjqy) over K. Moreover the splitting field
of f(X)− t over k(t) is L = E0 . . . Eq−1. We view C = K×/(K×)2 as an F2-vector space.
Consider S1 = {(−b+ 2)ζ−j

q | j ∈ Fq} and S2 = {(−b− 2)ζ−j
q | j ∈ Fq}. Unless q = 2 and

b = 0, in which case Γ = diag(D2
p), the extensions E0/K, . . . , Eq−1/K are pairwise distinct.

We may assume now that (q, b) 6= (2, 0) We distinguish two cases:
-Case 1: Suppose that S1∩S2 = ∅. Then u0, . . . , uq−1, v0, . . . , vq−1 are Fp-linearly inde-
pendent in C , and so are w0, . . . , wq−1. This implies that F0/K, . . . , Fq−1/K are linearly
disjoint. Hence E0/K, . . . , Eq−1/K are also linearly disjoint. Consequently, we obtain
Γ = Dq

p.
-Case 2: Suppose that S1 ∩ S2 6= ∅. Note that −b − 2 6= −b + 2, so uj 6= vj in C , for
all j ∈ Fq. Then, there exists i0 ∈ F∗

q such that (−b − 2)ζ−j
q = (−b + 2)ζ

−(j+i0)
q , that is,

b = 2(1+ ζi0q )(1−ζi0q )−1. Hence vj = uj+i0 for all j ∈ Fq. Since u0, . . . , uq−1 are F2-linearly
independent in C , by Lemma 4.3, w0, . . . , wq−2 are also F2-linearly independent. This
implies that F0/K, . . . , Fq−2/K are linearly disjoint, and so are E0/K, . . . , Eq−2/K. Since

13Here, we have Monk(g ◦ h) = D2q. Indeed, since X2 − 2 = T2(X), we have g ◦ h = T2q when b = −2,
and g ◦ h = −T2q(

√
−1x) when b = 2.
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E0/K, . . . , Eq−1/K are pairwise distinct and w0 · · ·wq−1 = 1 in C , combining Lemma 2.7
with Lemma 4.9, we deduce that Γ = Lp,q.

L

E0

jjjjjjjjjjjjj

Dp

. . . Eq−1

Dp

VVVVVVVVVVVVVVV

F0

CpAAAA

Fq−1

Cp uuuu

k(y) = K

C2
KKKKKK

C2 qqqqq

k(t)

Cq

□

4.2.4. Assume g = Tq and h = ℓ ◦ Tp. Since the cases g = T2 or h = ℓ ◦ T2 are covered by
the previous parts, we may suppose p, q ≥ 3. Recall that ℓ = ax+ b with a ∈ k∗ and b ∈ k.

Proposition 4.10. We have

Γ =

{
diag(Cq

p) if (a, b) = (±1, 0),

LDp,q or Γ = Dq
p otherwise.

Proof. Assume first that (a, b) = (±1, 0). In this case, f is linearly related to Tpq, so
Γ = diag(Cq

p).
Assume now that (a, b) 6= (±1, 0). Let K = k(y) where y ∈ k(t) satisfies t = yq + 1

yq .
Then the splitting field of Tq(X)− t = 0 over k(t) is k(y), and its roots are zi = ζiqy +

1
ζiqy

(i ∈ Fq). For all i ∈ Fq, let Fi be the splitting field of Tp(X) − ℓ−1(zi) over k(zi). Note
that, for all i ∈ Fq, the extensions k(y)/k(zi) and L̃i/k(zi) are linearly disjoint, where

L̃i = k(zi)
(√

(zi − b+ 2a)(zi − b− 2a)
)

is the unique quadratic subextension of Fi/k(zi); as a consequence, Ei = Fi(y)/k(y) is
dihedral, and so has a unique quadratic subextension Li/k(y). Moreover, the splitting



REDUCIBILITY OF SEPARATED POLYNOMIALS AND APPLICATIONS 21

field of f(X)− t over k(t) is L = E0 · · ·Eq−1.

L

E0 = F0(y)

ffffffffffffff
Eq−1 = Fq−1(y)

YYYYYYYYYYYYYYYY

L0
Cp

PPPPPP
Lq−1

Cp

kkkkkkk

F0

���������
k(y) = K

C2
OOOOO

C2 nnnnn
Fq−1

FFFFFFFFFFF

L̃0

~~~~~~~~~~
Cp

MMMMMMM
L̃q−1

Cp mmmmmmmm

GGGGGGGGGGG

k(z0)

C2
OOOOOOO

����������
. . . k(zq−1)

???????????
C2 kkkkkkkk

k(t)

nnnnn
OOOOO

For i ∈ Fq, let

ui = y − ζ−i
q

(
b− 2a+

√
(−b+ 2a)2 − 4

2

)
, vi = y − ζ−i

q

(
b− 2a−

√
(−b+ 2a)2 − 4

2

)
,

zi = y−ζ−i
q

(
b+ 2a+

√
(−b− 2a)2 − 4

2

)
and ti = y−ζ−i

q

(
b+ 2a−

√
(−b− 2a)2 − 4

2

)
.

By letting
wi =

(
ζ2iq y

2 + (−b+ 2a)ζiqy + 1
) (
ζ2iq y

2 + (−b− 2a)ζiqy + 1
)
(i ∈ Fq),

we have
(4.7) Li = k(y)(

√
wi).

With A = −b− 2a and B = −b+ 2a, we have
wi =

(
ζ2iq y

2 +Bζiqy + 1
) (
ζ2iq y

2 +Aζiqy + 1
)
,

for all i ∈ Fq. We view C = K×/(K×)2 as an F2-vector space. Clearly, for every i ∈ Fq,
we have wi = uiviziti in C . Consider

S1 = {ui | i ∈ Fq},S2 = {vi | i ∈ Fq},S3 = {zi | i ∈ Fq} and S4 = {ti | i ∈ Fq}.
We distinguish four cases:
Case 1: There exists k ∈ {1, 2, 3, 4} such that Sk /∈ {Si | i 6= k}. In this case, since
the vectors in Sk are F2-linearly independent in C , so are w0, . . . , wq−1. Hence we obtain
Γ = Dq

p.
Case 2: S1 = S2 and S3 = S4 but S1 6= S3. Note that u0 6= v0 or z0 6= t0, for otherwise
w0 = 1 in C, a contradiction. Without loss of generality, we may assume z0 6= t0. Then
there exists i0 ∈ F∗

q such that tj = zj+i0 , for all j ∈ Fq. On the one hand, 〈uivi | i ∈
Fq〉Fp ∩ 〈ziti | i ∈ Fq〉Fp = 1. On the other hand, by Lemma 4.3, z0t0, . . . , zq−2tq−2 are
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F2-linearly independent in C . Therefore w0, . . . , wq−2 are also F2-linearly independent in
C . Since w0 · · ·wq−1 = 1 in C , we have Γ = LDp,q.
Case 3: S1 = S3 and S2 = S4 but S1 6= S2. Note that u0 6= z0 or v0 6= t0. With-
out loss of generality, we may assume u0 6= z0. Then there exists i0 ∈ F∗

q such that
zj = uj+i0 , for all j ∈ Fq. In this case, 〈uizi | i ∈ Fq〉Fp ∩ 〈viti | i ∈ Fq〉Fp = 1. By
Lemma 4.3, u0z0, . . . , uq−2zq−2 are F2-linearly independent in C , so are w0, . . . , wq−2. Since
w0 · · ·wq−1 = 1 in C , we have Γ = LDp,q.
Case 4: S1 = S4 and S2 = S3 but S1 6= S2. By the same reasoning as in Case 3, we also
have Γ = LDp,q.
Case 5: S1 = S2 = S3 = S4. In this case, there exist i0, j0 ∈ Fq such that vk = uk+i0 ,
zk = uk+j0 and tk = uk+i0−j0

14 for all k ∈ Fq. But we have i0 6= j0 and j0 6= 0, for
otherwise w0 = u20u

2
i0

= 1 in C , a contradiction. By Lemma 4.4, w0, . . . , wq−2 are F2-
linearly independent. Since w0 · · ·wq−1 = 1 in C , we obtain Γ = LDp,q. □

5. Proofs of main results

5.1. Proof of Theorem 1.1. Let f and g be as in Theorem 1.1. By Theorem 3.1, we may
assume that Monk(f) is nonsolvable. Write f = f1 ◦ · · · ◦ fr (r ≥ 1) and g = g1 ◦ · · · ◦ gs
(s ≥ 1) for indecomposable polynomials fi, gj ∈ k[X], i = 1, . . . , r, j = 1, . . . , s. Let
k(xi), i = 0, . . . , r be the corresponding tower of fields such that xr = x, x0 = t and
fi(xi) = xi−1 for all 1 ≤ i ≤ r. Similarly, define k(yj), i = 0, . . . , s, so that ys = y, y0 = t
and gi(yi) = yi−1 for all 1 ≤ i ≤ s. For i = 1, . . . , r, let Ri = f1 ◦ · · · ◦ fi.

By Fried’s argument, we can also assume that (f, g) is minimally reducible. Let h ∈ k[X]
be a minimal nonsolvable left factor of g. Without loss of generality, we can suppose that
h = g1 ◦ · · · ◦ gu for some 1 ≤ u ≤ s. Note that g1, . . . , gu−1 are solvable polynomial maps
while gu is nonsolvable. By minimal irreducibility, k(x) and F0 := k(yu−1) are linearly

14The expression for tk = uk+i0−j0 follows from vk = uk+i0 , zk = uk+j0 , and the fact that the constant
terms of both ukvk and zktk, as a polynomial in y, are equal to ζ−2k

q .
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disjoint over k(t).
Ω

F0(x)

k(y)

zzzzzzzzzzzzzzzzzzzzz
k(x)

@@@@@@@@@@@@@@@@@@@@

OOOOOOOOOOOOO

F0

����������������

CCCCCCCC

k(t)

EEEEEEEE

f

~~~~~~~~~~~~~~~~~~~

Hence, since Ω is the Galois closure of k(x)/k(t), by [KN24, Lemma 2.12], it is also the
Galois closure of F0(x)/F0. In particular, Γu = Monk(gu) is quotient of Ur := Gal(Ω/F0).
As gu is nonsolvable, Γu is a nonabelian almost simple group.

For i = 1, . . . , r, let Ωi/k(t) be the Galois closure of k(xi)/k(t) and let Ui = Gal(ΩiF0/F0).
Let m ≥ 1 be minimal such that Γu is a quotient of Ui. Since Γu has a unique minimal
normal subgroup and it is nonabelian, Monk(fm) has to be nonsolvable. Indeed, other-
wise ΩmF0/Ωm−1F0 is a solvable extension and the kernel K ′

m of the natural projection
Um → Um−1 has to be in the kernel of the projection π : Um → Γu, contradicting the
minimality of m.

This moreover shows that in every decomposition Rm = h1◦· · ·◦hm for indecomposables
hi, the group Monk(hm) is nonsolvable. By the Ritt theorems [ZM08], this implies fm is
right unique, that is, for every decomposition f = u◦v with deg(v) ≥ 2, one has v = v′ ◦fm
for some v′ ∈ k[X]. Thus, letting Km be the kernel of the projection G:= Monk(Rm) →
Monk(f1 ◦· · ·◦fm−1), by [KNR24, Proposition 3.3.], the socle soc(Km) is a unique minimal
normal subgroup of G. In particular, its centralizer in G is trivial.

Since the Galois closure of F0/k(t) is solvable, Ur = Gal(Ω/F0) contains soc(Km) (which
is a power of a nonabelian simple group). As in addition K ′

m = Km ∩ Um, we deduce
soc(Km) = soc(K ′

m). Since the centralizer of soc(Km) in G is trivial, it follows that so
is the centralizer of soc(K ′

m) in Um. Since soc(K ′
m) is minimal normal in Um by [KN24,

Cor. 3.4]15, and its centralizer is trivial, its a unique minimal normal subgroup of Um. It
follows that soc(K ′

m) is mapped isomorphically to a minimal normal subgroup of Γu and
hence is simple. Thus soc(Km) = soc(K ′

m) is simple and hence diagonal16 in Monk(fm)d,
d = deg(f1 ◦ · · · ◦ fm−1). Hence, since soc(Monk(fm))d ⊂ soc(Km) by [KNR24, Corollory
4.4.], we have d = 1, and so m = 1.

15When applying [KN24, Corollary 3.4], one has to choose U as the image of the action of a block
stabilizer in the action of Um.

16that is, the projection into each factor of Monk(fm)d is injective.
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It follows that U1 is almost simple (so that U1 = Monk(gu)) and k(yu) is the fixed field
of some V ≤ U1 ≤ G = Monk(f1). In particular, we see that ΩV

1 is a common subfield of
Ω1 and k(yu) and hence is of the form k(z) with h(z) = t, h′(yu) = z and g1◦· · ·◦gu = h◦h′
for some polynomials h, h′ ∈ k[X]. As the core of V in U1 is trivial so is its core in G, so
that Ω1 is the common Galois closure of f1 and h.

By applying [M9̈5], it follows that the stabilizers G1 and V of f1 and h, resp., are either
conjugate or permutation equivalent, that is, G/G1

∼= G/V as G-sets. In the former case V
is clearly intransitive. In the latter case, every element of V has a fixed point in its action
on G/G1. Thus, in this case as well V is intransitive on G/G1 by Burnside’s lemma. It
follows that in both cases f1(X)−h(Y ) ∈ k[X,Y ] is reducible. By [KN24], either f1 = h◦µ
for a linear µ ∈ k[X] in which case both f and g factor through f1, or (f1, h) is among the
exceptional pairs classified by Fried.

5.2. Proof of Theorem 1.2. We assume f does not factor through an indecomposable
polynomial of degree ≤ 6. By [KN24, Corollary 2.5], Redf (Z) is the union of a finite set
and value sets g(Q) ∩ Z of Siegel functions g such that the fiber product of g and f is
reducible. Here we classify all g satisfying these properties and G = MonQ(g) = MonQ(f)
is nonsolvable, showing they have to be left factors of f . Throughout, assume on the
contrary f ∈ Q(x) and g ∈ Q(x) is a minimal pair, consisting of a polyonmial and a Siegel
function, such that Redf (Z) contains g(Q) ∩ Z but f and g do not have a common left
factor. The minimality here amounts to the following assertion: For every decomposition
f = h ◦ h2 ∈ Q[x] with deg(h2) > 1, the set Redh(Z) \

⋃
h=u◦v u(Q) is finite. This implies

that (f, g) is a minimally reducible pair (but now with g a Siegel function), and hence f
and g have a common Galois closure by Lemma 2.6.

Assume g1 ◦ · · · ◦ gt ∈ Q(y) for t ≤ s is a minimal nonsolvable subcover17 of g. Thus
g1, . . . , gt−1 are linearly related over Q to Siegel functions with solvable monodromy while
gt has nonsolvable monodromy. In particular by our minimality assumption, Q(x) and
F0 := Q(yt−1) are linearly disjoint over Q(t). Since these are linearly disjoint and Ω is the
Galois closure of Q(x)/Q(t), it is also the Galois closure of F0(x)/F0 by [KN24, Lemma
2.12]. In particular, the monodromy group Γt of gt is quotient of Ur := Gal(Ω/F0) (the
Galois closure of F0(x)/F0). Recall that by [M9̈5, Lemma 4.7(c)] the maps gi are also
indecomposable over C.

Suppose18 r is minimal for which Γ := Γt is a quotient of Ur. Since Γ has a unique
minimal normal subgroup and it is nonabelian, MonQ(fr) has to be nonabelian. Indeed,
otherwise F0(xr)/F0(xr−1) is a solvable extension and the kernel K ′

r of the natural pro-
jection Ur → Ur−1 has to be in the kernel of the projection π : Ur → Γ, contradicting
the minimality of r. This moreover shows that in every decomposition f = h1 ◦ · · · ◦ hr,
MonQ(hr) is nonsolvable. By the Ritt theorems [ZM08] this implies fr is right unique,
that is, for every decomposition f = u ◦ v with deg(v) > 1, one has v = v′ ◦ fr for some

17One might need to replace the decomposition g = g1 ◦ · · · ◦ gs to get such a subcover. In this step, one
loses the reducibility of the curve f(x) = g(y).

18To do so, one might need to replace f by a subcover of it. Then Ur can still be identified with a
subgroup of G via restriction.
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v′ ∈ Q[x]. Thus, letting Kr be the kernel of the projection G → MonQ(f1 ◦ · · · ◦ fr−1), its
socle soc(Kr) is a unique minimal normal subgroup of G by [KNR24, Proposition 3.3.]. In
particular, its centralizer in G is trivial.

Since soc(Kr) is a power of a nonabelian simple group (since it is a nonabelian minimal
normal subgroup), its projection to the solvable group G/coreG(Ur) is trivial, so that
soc(Kr) ⊆ Ur. Since its centralizer in G is trivial, so is its centralizer in Ur, so that it is the
unique minimal normal subgroup of Ur. It follows that soc(Kr) is mapped isomorphically
into Γ.

By the monodromy classification of indecomposable Siegel functions [M1̈3, Thm. 4.8],
either (A) Γ is almost simple, or (B) it is of product type A2

k ≤ Γ ≤ Sm o S2, m ≥ 5,
or (C) it is in an explicit list of small degree affine groups. We claim that only case (A)
occurs. Since Γ is nonsolvable and G contains only composition factors of polynomials of
degree > 6, in case (C) its nonabelian composition factor is one of A7, SLk(2), k = 4, 5
by [M1̈3]. Moreover by [M1̈3, Theorem 5.2], SL3(2) is the only composition factor of a
Siegel function over Q among the list for (C). However, by the monodromy classification
of indecomposable polynomials over Q, SL3(2) does not appear as a composition factor of
MonQ(fi) and hence is not a composition factor of G, so that (C) does not occur. In case
(B), since soc(Kr) is mapped isomorphically to Γ, soc(Kr) ∼= A2

k. On the other hand by
[KN24, Proposition 2.1], soc(Kr) ∼= AP

k ≤ A
[d′r−1]

k , where m := deg(f1◦· · ·◦fr−1), [m] is the
corresponding set of blocks, and P is a partition of [m]. Since soc(Kr) ∼= A2

k, P consists of
two blocks. The stabilizer GP of the action of G on P contains the stabilizer of Q(x) but
on the other hand is of index 2 in G. This yields a subfield ΩGp ⊆ Q(x) of degree 2 over
Q(t), yielding a contradiction to the assumptions that f does not factor through a degree
2 polynomial.

Henceforth, we may assume case (A). Since the minimal normal subgroup soc(Kr) is
mapped isomorphically into the almost simple group Γ, it is simple. Thus soc(Kr) is
diagonal in MonQ(fr)

m. If m > 1, this contradicts [KNR24, Theorem 3.1] or [Ros22, Main
Thm.]. Thus m = 1 and hence r = 1. It follows that Ur is almost simple and Q(yt) is
the fixed field of some subgroup V ≤ Ur. In particular, letting Ω1 be the Galois closure
of Q(x1)/Q(t), we see that ΩV

1 is a common subfield of Ω1 and Q(yt) and hence is of the
form Q(z) with h(z) = t and g1 ◦ · · · ◦ gt = h ◦ h′ for some h, h′ ∈ Q(x) where h is a Siegel
function over Q. As the core of V in Ur is trivial so is its core in G, so that Ω1 is the
common Galois closure of f1 and h.

As in the proof of [KN24, Theorem 1.1], crossing the lists in [M9̈5, M1̈3] over Q yields
that either h factors through f1 or MonQ(f1) ∼= S5 in the natural action. The latter case
contradicts our assumption that deg(f1) > 6. In the former case, the minimal reducibility
assumption implies f and h coincide with f1 up to composition with linear fractionals, as
desired.

Finally, in the solvable case, we deduce Theorem 1.2 from:
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Proposition 5.1. Suppose f = f1 ◦ · · · ◦ fr for indecomposable fi ∈ Q[X], i = 1, . . . , r of
degree ≥ 7 with solvable MonQ(fi). Then

Redf (Z) = ∪h(h(Q) ∩ Z) ∪ finite set,
where h ∈ Q[X] runs through all left nontrivial factors of f .

Proof. By [KN24, Corollary 2.5],

Redf (Z) =

(⋃
h

(h(Q) ∩ Z)

)
∪ finite set,

where h ∈ Q(Y ) runs through all Siegel functions such that f(X) = h(Y ) is reducible. By
Theorem 3.1, one can restrict those h to nontrivial left polynomial factors of f . □

5.3. Application to functional equations. Let k be an algebraically closed field of
characteristic 0.

Proof of Corollary 1.4. Let F (x, y) ∈ k[x, y] be an irreducible factor of f(x) − g(y) and
k(x, y) its corresponding genus-0 function field. Set t = f(x) = g(y). Let k(s) = k(x)∩k(y).
Furthermore, by possibly replacing s, we may assume t = w1(s) for w1 ∈ k[x], and s =
f1(x) = g1(y) for f1, g1 ∈ k[x]. By our assumption of minimality for f, g, we get k(s) = k(t),
so that deg(w1) = 1. Since f1(X)−g1(Y ) ∈ k[X,Y ] is reducible by assumption, §5.1 (which
gives Theorem 1.1 over arbitrary fields k of characteristic 0) implies that either (a) f1 and
g1 have a common left factor h ∈ k[x] of deg(h) > 1, or (b) that f1 = w2 ◦ h1 ◦ u and
g1 = w2 ◦ h2 ◦ v, where deg(w2) = 1, and {h1, h2} is one of the pairs of polynomials of
degree 7, 11, 13, 15, 21, or 31 in [CNC99].

In the first case (a), we have f1 = h ◦ f2 and g1 = h ◦ g2, for h, f2, g2 ∈ k[x] \ k, . Since
k(x) ∩ k(y) = k(s), it follows that k(x2) ∩ k(y2) = k(s) for x2 = f2(x) and y2 = g2(y).
Since h(x2) = h(y2) = s, we obtain two distinct roots x2 and y2 of h(X) − s ∈ k(s)[X],
so that h(X) − h(Y ) ∈ k[x, y] has a nondiagonal irreducible factor of genus 0. It now
follows from [AZ03, Thm. 1] that there exist w2, h2 ∈ k[x] such that f = w2 ◦ h2, where
already h2(x2) = h2(y2). Moreover, either h2 = xn ◦ u1, or Tn ◦ u1 (with deg(u1) = 1)
for some n ≥ 2, or h = w2 ◦ Pi ◦ u1, i = 1, 2, 3 (with deg(u1) = 1). Since we assumed
k(x2) ∩ k(y2) = k(s), it follows that k(h2(x2)) = k(h2(y2)) is of degree 1 over k(s), and
hence deg(w2) = 1. By setting µ = w1 ◦ w2, u = u1 ◦ f2, and v = u1 ◦ g2, it follows that
(f, g) is in cases (2)-(4).

In the second case (b), setting x2 = u(x) and y2 = v(x), the function field k(x2, y2) is
of genus 0 as a subfield of k(x, y). A direct computer check, using Magma and the list of
ramification types in [M9̈5], shows that the only pairs {h1, h2} in [CNC99] with a genus 0
factor are certain pairs of degree 7 or 13. By setting µ = w1 ◦ w2, we get that (f, g) is in
case (5). □

Remark 5.2. The computer check further reveals that in case (5), the degree-7 (degree-13)
polynomials h1, h2 have three branch points with branch cycles of orders 2, 3, 7 or 2, 4, 7
(resp. 2, 3, 13).
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