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ABSTRACT. We solve a problem of Davenport—Lewis—Schinzel, originating in the 50’s,
concerning the reducibility of separated polynomials, in the absence of indecomposable
factors of degree < 4. Consequences are derived to the finiteness problem for Hilbert’s
irreducibility theorem (a.k.a. Hilbert—Siegel problem), to stability in arithmetic dynamics,
and to functional equations in rational functions.

1. INTRODUCTION

Reducibility of polynomials is a central topic of interest in number theory, cf. [Sch00]. In
a prominent paper from 1963, Schinzel poses nine problems concerning reducibility of poly-
nomials. The first three were described by Zannier [Sch07, Part E] as “substantial, involving
several mathematical fields” due to the intimate relation to polynomial monodromy. The
second problem was solved by Fried [Fri86], cf. [CNC99], while the third problem concern-
ing the reducibility of separated polynomials f(z1,...,2m) — g(y1,...,yn) € Qlz1, ..., Yn]
was reduced to the first problem by Davenport and Schinzel [DS64]. As we shall see below,
the first problem, also known as the Davenport—Lewis—Schinzel (DLS) problem?, arises nat-
urally in several topics including the finiteness problem for Hilbert’s irreducibility theorem
(a.k.a. the Hilbert—Siegel problem), low degree points in fibers of polynomial maps, sta-
bility in arithmetic dynamics, functional equations, intersections of lemniscates [Pak23a],
expanding polynomials [Taol2, Taol5], and sum-product estimates [BT12, Thm. 6, proof].

The DLS problem is deceptively easy to state:

“For which polynomials f,g € C[z]\ C, is f(z) — g(y) € Clz,y] reducible?”

A trivial source for reducible pairs arises when f = g, in which case f(x) — f(y) has
a diagonal factor x — y. Further examples (f,g) = (T4, —T4) were given by Davenport,
Lewis, and Schinzel [DLS61], where T), is the degree-n Chebyshev polynomial satisfying
To(x + 1/x) = 2™ + 1/2™. Soon after, examples where deg(f) = deg(g) is either 7 or
11 were given by Birch. There has been an extensive work on the problem from the 50’s
to the 60’s, see Cassels [Cas70]. Eventually, when f,g are indecomposable polynomials
(i.e., cannot be written as a composition of two polynomials of degree > 1), the cases
where f(z) — g(y) € C[z,y] is reducible were classified by Fried [Fri86], and in particular
deg(f) = deg(g) is 7,11,13,15,21, or 31. The special indecomposable polynomials of these
degrees were then explicitely written by Miiller [M95], and Cassou-Nogues—Couveignes

IThe problem is also named Schinzel’s problem in some papers, e.g. [Fril2]. It is first explicitely stated
in a paper of Davenport, Lewis and Schinzel [DLS61].
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[CNC99]. Further studies concern quadratic factors of f(z)—g(y) € Clz,y] by Bilu [Bil99],
cf. [KMS07]; the cases g = c¢f, ¢ € C by Avanzi-Zannier [AZ03]; the case ¢ = a o f, for
degree-1 a € Clx] by Fried and Gusi¢ [Fril2, FG12|; the case where f(z) = g(y) has a
component of genus < 1 by Zieve et al., cf. [Ziel2]; and the case where f is a composition
of polynomials with nonsolvable monodromy [KN24]. However, the problem remains open
for decomposable polynomials.

In this paper, we develop and use results concerning solvable monodromy groups of de-
composable polynomials in order to solve the DLS problem and consequently make signifi-
cant advances on the above mentioned topics. For this working draft, we avoid composition
factors of degree < 4 for one of the polynomials:

Theorem 1.1. Let f,g € Clx] be polynomials of degree > 1 such that f does not factor
through a nonlinear polynomial of degree < 4. Then f(z) — g(y) is reducible in Clz,y] if
and only if one of the following occurs for some polynomials f1,g1 € Clx]:

(1) f and g have a common composition factor h € Clz] of degree at least 2, that is,
f=hofiand g=hog;

(2) f=pohiofi and g = pohgog, for some linear p € Clx|, where (hi,hs) is one
of the pairs of polynomials of degrees 7,11,13,15,21,31 given in [CNC99, §5].

In future versions, we shall remove the assumptions on factors of f. The new methods
introduced deal with polynomials with solvable monodromy. For such poynomials Theo-
rem 1.1 is a special case of Theorem 3.1. The general case, proved in §5.1, is based on
the combination of these new methods, with the older methods [KN24] for nonsolvable
monodromy. The theorem applies over arbitrary fields of characteristic 0.

We next discuss the consequences to the above-mentioned topics:

Reducible fibers and the Hilbert-Siegel problem. For a degree-d polynomial f € Q[z], con-
sider its fibers f~!(a) C C over rational points a € Q, and more specifically, the degrees
[Q(a) : Q] of preimages a@ € f~'(a). For a € Q, say that the fiber f~!(a) over a is
irreducible  if the degree [Q(«) : Q(a)] attains its maximal value d for (all) o € f~!(a).

Hilbert’s Irreducibility Theorem (HIT) asserts the existence of infinitely many a € Z
such that f~!(a) is irreducible. The finiteness problem, a.k.a. the Hilbert-Siegel problem?,
asks to determine, up to a finite set, the set of integral exceptions for Hilbert’s theorem:

Red;(Z) := {a € Z| f '(a) is reducible over Q}.

Clearly, Red¢(Z) contains every integer in f(Q), and furthermore every integer in fi(Q)
for a decomposition f = fi o fo in Q[z] with deg(fi1) > 1. The problem is then to de-
termine whether Red¢(Z) \ U f1(Q) is finite, when f; runs through left factors of f. For
indecomposable polynomials f € Q[z] of degree > 5, the finiteness of Redf(Z) \ f(Q) was
shown by Fried [Fri74, Fri86], cf. [M99], and examples of degree-5 polynomials f € Q[z]
for which this set is infinite were constructed by Débes—Fried [DF99]. For compositions f

2Equivalently, f! (a) is irreducible if it is irreducible as a scheme over Spec Q(a), or simply if f(z) —a €
Q(a)[x] is reducible.
3The name first appeared in [Fri86], cf. [DF99).
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of polynomials in Q[z] with nonsolvable monodromy and any indecomposable left factor
f1 of f, the set Red;(Z) \ f1(Q) is also finite by [KN24].

The problem is closely related to the DLS problem: For, as in the proof of HIT), it reduces
to determining the values sets g(Q) for which g(Q) N Reds(Z) is infinite, or equivalently
to determining when is the curve f(xz) = g(y) is reducible for a rational function g €
Q(z) whose value set g(Q) contains infinitely many integers, a.k.a. a Siegel function. For
polynomial g € Q[z], this is equivalent to the reducibility of f(z)—g(y) € Q[z,y], a rational
version of the DLS problem.

Variants of the problem where f: X — IP’(b is a degree-d map from a (smooth projective)
curve X of positive genus were also considered. In the general case, where the monodromy
group is Sg, Redf(Z) is in fact finite, see Miiller [M99], and [MO02] for other cases. The
finiteness of the analogous set Red(Q) recently arose in the context of algebraic points of
fixed degree d in fibers of maps f : X — ]P’(b over rational points, as considered by Derickx—
Rawson [DR25]. However, the original Hilbert—Siegel problem has remained open.

The above work on the DLS problem and solvable monodromy groups led us to the
following theorem, bringing us close to the solution of the Hilbert—Siegel problem:

Theorem 1.2. Let f € Q[z] \ Q be a nonlinear polynomial such that f does not factor
through an indecomposable of degree < 6. Then Red(Z) is the union of U, (f1(Q) NZ)

with a finite set, where fi € Q[z] runs through all (nonlinear) indecomposable left factors
f=/fioh, heQlz], of f.

This is proved in Section 5.2 with an approach that applies over general number fields.

Stability in arithmetic dynamics. Stability of polynomials under iterates is a main topic in
arithmetic dynamics, see [BIJ119, §19]. A polynomial f € Q[z] is called stable over a € Q,
if the fibers over a of the n-fold iterates f°* := fo---o f are irreducible for all n € N.
In particular, it is natural to ask whether for some n € N, there could be infinitely many
a € Z over which the fibers of f° are reducible, but those of f°"~! aren’t. In other words,
when is Redsn(Z) \ Redn-1(Z) infinite? As a direct consequence of Theorem 1.2, there
are no such polynomials f admitting no indecomposable factor of degree < 6:

Corollary 1.3. Let f € Q[z] be a polynomial of degree > 1 that does not factor through
an indecomposable of degree < 6. Then Redsn(Z) \ Red¢(Z) is finite.

A natural arising open problem is to determine the exceptional polynomials f (with a
factor of degree 2,3 or 4) for which Redsn(Z) \ Red¢(Z) is infinite for some n > 2 and for
which n is this possible.

Functional equations. For polynomials f, g € Clz], the solutions to the functional equation

(L.1) f(X(2)) = 9(Y(2))

in polynomials X,Y € Clz] are known by Ritt’s theorems, cf. [ZMO08]. Avanzi-Zannier

[AZ01] raise the problem of determining the solutions in rational functions X,Y € C(z).
As for the DLS problem, this problem is partially motivated (cf. [DLS61], or [AZ01, Pg.

1]) by the question: when is f(Q) N g(Q) (resp. f(Z) N g(Z)) infinite for f,g € Q[z]|? Or
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equivalently, when does the curve f(z) = ¢g(y) admit infinitely many rational (resp. integral)
points? The solution for integral points was given by Bilu—Tichy [BT00] and a solution for
rational points was announced by Zieve et al. in 2012, cf. [Ziel2, DHHT12, CDH'12] but
have not yet appeared. By Faltings’ (resp. Siegel’s) theorem, such curves have a component
of genus < 1 (resp. 0). The existence of genus-0 component is equivalent to the solvability
of (1.1) in X, Y € C(2).

The problem naturally divides into two cases according to the reducibility of the curve
f(z) = g(y). Solutions in the irreducible case have appeared in various cases, see e.g.
[Pak10, Pak18, HT23]. However, with the exception of cases where f = cg for ¢ € C
[AZ03], or cases where the degree of one of the polynomials is much larger than the other’s
[Pak23b, Thm. 1.3] or [Fri23], little has appeared in the literature on the reducible case.

Our solution to the DLS problem gives a simple approach to the reducible case. In
particular, the following consequence of Theorem 1.1 and [AZ03] shows that when f(z) =
g(y) is reducible, f,g have to factor over C, in a certain way, through z" or T, or few
sporadic polynomials. Note that given f,g € Clz] and X,Y € C(z) satisfying (1.1), one
obtains other solutions (w o f)(X(2)) = (wo g)(Y(2)) by composing with w € C[z]. To
avoid these trivial extra solutions, call (f, g) a minimal pair admitting a solution f(X(z)) =
9(Y(2)), X,Y € C(2)\C if there is no w € C[X] of degree > 1 such that f = wof;, g = wogy
such that (f1, 1) also has a solution f1(X1(2)) = ¢1(Y1(2)), for some X;,Y; € C(2)\ C .

Corollary 1.4. Suppose f,g € Clz] is a minimal pair admitting a solution f(X(z)) =
g(Y(2)) for some X, Y € C(2) \ C, and that f(x) — g(y) € Clz,y] is reducible. Assume
further that f does not factor through an indecomposable polynomial of degree < 4. Then
one of the following holds for some p,u,v € Clz] with deg(u) = 1:

(1) f=poa"owuand g=pox™ov forn >2;

(2) f=poT,ouand g=poT,ov forn>2;

(3) f=poPiouandg=polP;ouv, foric{l1,2,3}, where Pi(z) = 2%(x — 1) for
coprime a,b, and Ps, Py are the (degree 5 and 7) polynomials from [AZ03, Def. 2.1].

(4) f = pohiou and g = pohgov, where {hi, ha} is among one of the pairs of degree-7
or degree-13 polynomials appearing in §5.1 or §5.3, resp., of [CNC99].

The corollary is proved in Section 5.3 and further restrictions on the shapes of the
involded decomposition are discussed after it.

Acknowledgments. The first and third authors were supported by the Israel Science Foun-
dation, grant no. 353/21. The first author is also grateful for the support of a Technion
fellowship, of an Open University of Israel post-doctoral fellowship, and of Labex CEMPI
(ANR-11-LABX-0007-01).

2. BASIC SETUP AND PRELIMINARIES

Let k be a field of characteristic 0. In the whole paper, all groups actions are left actions.
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2.1. Monodromy groups. A map f : X — ) defined over k is a finite (dominant and
generically unramified) morphism of (smooth irreducible projective) varieties defined over
k. This induces a field extension k(X)/k()) via the pullback f*: k(Y) — k(X), given by
h+ ho f. The degree deg(f) of f is then defined as [k(}) : k(X)].

Let f: X — ) be a map of degree d defined over k. The monodromy group Mong(f)
of fis Gal(Q/k(})), where Q is the Galois closure of the extension k(X)/k(Y). It is a
permutation group of degree d, via the action on the generic fiber of f, or equivalently
via the action on the roots of a minimal polynomial for k(X) over k()). If f = fi/f2
is a rational map for coprime fi, fo € k[X], then Mong(f) is just the Galois group of
f1(X) — th(X) € k(t)[X]. ) )

When X and Y are geometrically irreducible, letting f7 : & ®x k — )V @ k be the
map induced by f over k, the geometric monodromy group Mong(fz) = Gal(Qk/k(X)) is
isomorphic to the image of the action of the étale fundamental group 7$*()\ Br(f)) on the
fiber f~1(yo) of a base point yg € V(k) over which f is unramified, that is, the classical
definition of monodromy.

Let f,g € k(X)\ k. We say that f and g are linearly related over k, and denote f ~ g,
if there exist p,v € k(X) of* degree 1 such that f = pogowv. Note that the degree of
f € k(X)\ k is max{deg(f1),deg(f2)}, where f = fi1/f2 for coprime fi, fo € k[X].

Note that every polynomial f € k[X]\ k with cyclic monodromy group is well known
to be linearly related to X™. We call such polynomials cyclic. Similarly, every polynomial
f € k[X] \ k with dihedral monodromy group is linearly related over k to a Chebyshev
polynomial of degree n = deg(f) [ZM08, Lemma 3.3], that is, the unique degree n polyno-
mial 7;, for which T,,(X 4+ 1/X) = X™ 4+ 1/X"™. We call such polynomials dihedral. Note
that for both cyclic and dihedral polynomials f of degree n, the group Mong(f) contains
a regular cyclic group C,, of order n, and hence Mong(f) is isomorphic (as a permutation
group) to a subgroup of AGLy(n) =Z/n x (Z/n)*, that is, the holomorph of C,.

Note that more generally, every indecomposable polynomial f of degree p > 5 with
solvable monodromy group is of prime degree and is either cyclic or dihedral, so that
Mony(f) embeds in AGL;(p) and its action is equivalent to the action on F,,. Finally, note:

Remark 2.1. For any prime p, every intransitive subgroup U < AGL;(p) fixes a point®.
For p = 2, the claim holds trivially. Now assume that p is odd. Then we can write
U = (UNFy,(a,b)), for some o = (a,b) € F, x F. By the intransitivity of U, we have
UNTF, =0. Since U # 1, it follows that b # 1. Therefore, U fixes a/(1 —b) € F).

Moreover, if n is a composite number and U is an intransitive subgroup of AGL(n),
then there exists a divisor d|n which is either prime or equal to 4, such that U projects
to an intransitive subgroup of AGL;(d). Indeed, this is the group-theoretical wording of
what is commonly known as Capelli’s lemma.

2.2. Polynomial decompositions. Recall that the monodromy group Mony(f) of a com-
position f = go h of two maps g : Y — P h: X — Y is a subgroup of 4! B := A% x B,

4called also a linear fractional.
5Here, AGL1(p) can be more generally replaced by a Frobenius group.
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where A := Mony(h); B := Mony(g); d = deg(g); and B acts on A? by permuting the d
copies. In particular, B is a natural quotient of Mong(f). Letting B act on the set of roots
B of a minimal polynomial of k())/k(t), the stabilizer of a block b € B is the subgroup of
Mony(f) fixing b under its action through B. The block kernel is the kernel of the action
of Mong(f) on B. Letting ' C Q be the Galois closures of ¢g*, and f*, resp., the block
kernel coincides with Gal(2/€’), while the block stabilizer coincides with Gal(Q/k(¢,b)),
where k(t,b) is the conjugate of K())) corresponding to b.

For polynomial decompositions, Abhyankar’s lemma implies the block kernel is nontriv-
ial, see e.g. [KN24, Lemma 2.8]. To be more precise, we have:

Lemma 2.2. Suppose f = goh € k[X]\ k with deg(f),deg(g) > 2. Then the order of the
block kernel K = ker(Mong(f) — Mong(g)) is divisible by deg(h).

Proof. Let x be aroot of f(X) =t and let w = h(z). Denote by Q/k(t) the Galois closure of
k(x)/k(t). Note that QF /k(t) is the Galois closure of k(w)/k(t). By Abhyankar’s lemma

and the ramification index at oo, the extensions Q¥ /k(w) and k(x)/k(w) are linearly
disjoint. Therefore deg(h) = [k(x) : k(w)]|[Q : QF] = |K]|. O

Recall [ZM08, Theorem 2.1.]:

Theorem 2.3 (Ritt’s first theorem). Let f € k[X] be a polynomial of degree > 2. Consider
two complete decompositions® U and V of f. Then there exists a finite sequence S of com-
plete decompositions of f such that U,V € S and every pair of consecutive decompositions
in' S are Ritt neighbors’.

The following result, which relates decompositions over k and decompositions over k, is
based on Ritt’s first theorem, and follows from [FM69]:

Theorem 2.4 (Fried-MacRae). Suppose f = fro---o f,. € k[X]\ k for indecomposable
polynomials f; € k[X] (1 <i <r). Then there exist linear polynomials {1, ... ,l._1 € k[X]
such that g1 = f1 o0y € k[X], g» = £, o f» € k[X] and g; = £}, o f; o £; € k[X] for all
2<i<r—1. In this case, we have f = gy o---0 g,.

2.3. Reducibility. Given f,g € k(X)\ k, the curve f(X) = g(Y") is birational to the fiber
product of IF’l#fVQIP’l of f: P! — P! and ¢g : P! — P'. Moreover, this fiber product is
irreducible over k if and only if the root fields k(z) and k(y) of f(X) —t € k(t)[X] and
g(Y) —t € k(t)[Y], resp., are linearly disjoint over k().

In particular, if the curve f(X) = ¢(Y) is reducible, then f o u(X) = go v(Y) is
reducible for every u,v € k(X) \ k. Thus, the Davenport-Lewis—Schinzel problem reduces
to classifying the pairs f,g € k(X) \ k that are minimally reducible:

6A complete decomposition of f is a decomposition f = f1 o--- o f, for indecomposable polynomials
fiy.oo, fr € K[X].
7Comple‘ce decompositions f = fio---o fr and f = fl o-- -ofr are Ritt neighbors if there exists 1 <7 < r
such that
o f;j=fforj¢&{ii+1}, and
o fiofix1=fio fisr.
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Definition 2.5. We say that f,g € k(X) \ k is a minimally reducible pairif f(X) = g(Y)
is reducible and f1(X) = ¢1(Y) is irreducible for every decomposition f = f; o fo and
g = g1 0 g2 such that deg(f1) < deg(f) or deg(g1) < deg(g).

Clearly every pair f, g for which f(X) = g(Y) is reducible factors as f = fiof2, g = g1092
for a minimally reducible pair f1, gi.

The following well known lemma shows that minimally reducible pairs have a common
Galois closure:

Lemma 2.6. Let f,g € k(X)\ k be a minimally reducible pair, and k(x) and k(y) the root
fields of f(X) —t and g(X) —t € k(t)[X], resp. Then k(x)/k(t) and k(y)/k(t) have the
same Galois closure.

Proof. Suppose on the contrary k(y) is not contained in the Galois closure Q of k(z)/k(t).
Since k(z) and k(y) are not linearly disjoint over k(t), so are k(x) and k(y) N§ by [KN24,
Lemma 2.11]. Since k(y)NQ = k(y1) is properly contained in k(y), we may write g = g1 092
for g1,92 € k(X) \ k with deg(g1) < deg(g) such that ¢t = g1(y1) and y1 = g2(y). Thus,
g1, f is a reducible pair with deg(g1) < deg(g), contradicting the minimality of the pair

1,9 O

2.4. Wreath products of affine groups. For polynomial maps f,g € k[X] of prime
degrees p and ¢ resp., with solvable monodromy groups, we have Mong(f o g) < A B,
where A < AGL;(q) and B < AGL1(p) 8 This section presents preliminary results on
subgroups of A B for such A, B and firstly on normal subgroups of AP:

Lemma 2.7. Let C,, < H < AGL(p) properly contain C,, and n € N. Then every
epimorphism i : H" — H factors through the projection to one of the n coordinates.

Proof. Since ged(p,p — 1) = 1, we have ¢(C}) = Cp. Viewing ¢ as a surjective linear
functional on Fy = @& ,Fye;, some direct summand Fpe; is mapped onto F,. Let m; :
H" — H denote the projection to the i-th coordinate. Since ker(m;) and Fpe; commute so
are their images, and hence elements of ker(m;) of order coprime to p have trivial ¢-images.

Now assume on the contrary that ¢(Fpe;) = C) for some j # i. Since every element in
ker(m;) of order coprime to p has trivial ¢-image, and since (ker(m;), ker(7;)) = H", every
element whose order is coprime to p has trivial i-image, contradicting the surjectivity of
. Thus ¢(Fpe;) = 1 for all j # 4. Since in addition elements of ker(m;) of order coprime
to p have trivial 1-image by the first paragraph, v factors through ;. O

We describe normalizers and commutator subgroups of transitive subgroups of G :=
AGL1(¢) Y AGLy(p) as follows. For C,H < G, let No(H) denote the elements of C' nor-
malizing H, and [C, H|] < G the commutator subgroup.

Proposition 2.8. For primes p, q, let (H,0) < AGL1(¢)1C), be a subgroup, where H < C%
is o-invariant: H® = H, and o is a lift of Cp of order p or pq with ¢? € H. Then 1)
[H : [H,{0)]] | ¢, and 2) [Ner((H,0)) - H] | q.

8More precisely, we can take A = Mony(g) and B = Mony(f).
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If I < H is a o-invariant subgroup such that (H,o)/I is abelian, then 3) [H : I| | q. In
particular, if (H,o) is abelian, then 4) [Ngp((H, 0))] | Q.

Proof. The conjugation by o induces an automorphism o € Aut(CY) of order p, which
endows C¥ with an F,[7]-module structure. Note that Fy[o] ~ Fy[z]/(a? — 1) via = — G,
and that C§ = F,[ole is a cyclic Fy[o]-module generated by e := (1,0,...,0). Thus, C}
is a quotient of the free module Fy[7| of rank 1. Since both have the same cardinality, it
follows that C§ = F,[a] as an F,[g]-module. Henceforth, we identify C§ with F,[7] under
this isomorphism. Therefore H is a submodule of the form gF,[a], where g € F,[a] divides
the characteristic polynomial 7 — 1.

To see 1), note that, in F,[7], the element [g,0] = gog~lo™! = g(G-g~1) € H identifies
with g —5g = —(@ — 1)g € Fy[g]. Thus, [H, (0)] identifies with (7 — 1)gF,[g]. Since the
latter is an [F-subspace of codimension at most 1 in gF,[a], we obtain [H : [H, (0)]] | q.

To prove 2), we first claim that N' = Ngr((H,0)) is also invariant under o. Indeed, let

uw € N. Then uo~'u~" = ho” for some h € H and k. Considering the projection on Cp,
we get k = —1 + pr for some r > 0. Hence, we have

ouo tut = (cho™)o?" € HoP"= H.

Since H < N (as H = H), we obtain cuc~! € Hu C N/, proving the claim. It follows that
H < N < C} is an F,[7]-submodule, so that N' = fF,[7] for some f | g € Fy[]. Since N
normalizes (H, o), we have [N, (0)] € H. As in the proof of (1), [NV, (0)] = (T — 1) fF4[a],
so that the inclusion [N, (¢)] € H implies g | (6—1)f. From (¢ —1) fFy[g] < H = gF,[7] <
N = fF,[o] and [Fy[a] : (¢ — 1)F,[7]] | ¢, we deduce that [N : H]| | g.

To see 3), note that [H, (o)) < I < H, so that [H : I| | [H : [H,(0)]] and the latter
divides ¢ by 1).

To see 4), pick I = 0, so that the combination of 2) and 3) gives:

Nep ((H, 0))| = Wep ((H,0)) - H] - [H| | ¢*.
O

Lemma 2.9. Let K < AGLi(p)" such that each component projection contains Cy. Then
soc(K) = KNCy.

Proof. Since K is solvable, soc(K) is the direct product of elementary abelian g-subgroups
H, for various primes ¢. Since the component projections of each H, are abelian normal
subgroups of AGL;(p), i.e., are contained in Cp, it follows that H, = 1 for every ¢ # p, so
soc(K) C K NCy. For the converse inclusion, note that K N C} is a semisimple module
under the action of K/(KNCy), meaning that the submodule soc(K') has a complement N,
which is in particular normal in K. By the definition of the socle, this implies N = {1}. O

2.5. A lemma on Siegel functions. Let k be a number field with ring of integers Oy, and
¢ : X — P} a map defined over k. By a famous theorem of Siegel, if ¢(X) N O is infinite,
then firstly, X' is birational to P} (i.e., ¢ is given by a rational function f € k(X)), and
furthermore |p~!(co0)| < 2. When k = Q, it is furthermore necessary for the preimages of
oo to be algebraically conjugate. Motivated by this, we call a rational function f € k(X)
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over an arbitrary field k of characteristic zero a Siegel function, if |f~1(c0)| < 2, and for
k = Q, we call f a Siegel function over Q, if additionally either |f~!(c0)| = 1 or the two
preimages of oo are algebraic conjugates. The following lemma describes Siegel functions
that factor through solvable polynomials.

Lemma 2.10. Let ¢ > 3 be a prime. Let U € k[X] be of degree > 2, let V € {X9,T,} and
let £ € k(X) be a linear fractional. Assume that U ooV is a Siegel function.

(1) If V= X1, then { = % for some a € k,b € kE*, or € is a linear polynomial. In
the former case, (UoloV)(1/X)=Uo (bX +a)oV.
(2) If V=T, and q > 5, then { is a linear polynomial.

Proof. (1) Assume V = X9, Since ¢ > 3, we have |[V~1(¢)| > 3 for all ¢ € k. Hence
£71(c0) € {0, 00}, which implies that £(X) = “XFb for some a € k,b € %, or that
¢ is a linear polynomial. In the former case, we have foV o (1/X) = a + bX? =
(bX + a) oV, giving the second equality.

(2) Assume V = T,. Since ¢ > 5, we have [V ~1(c)| > 3 for all ¢ € k. Hence £~1(c0) =
00, so £ is a linear polynomial.
g

2.6. Composition of two indecomposable solvable polynomials. Our method for
proving Theorem 1.1 relies on the ’largeness’ of the monodromy groups of solvable poly-
nomials:

Theorem 2.11. Assume that k = k. Suppose h € k[X]\ k (resp., g € k[X]\ k) is linearly
related over k to XP or T, (resp., Ty or X?) for primes p,q > 3. Assume goh is not related
over k to XP? or T,,. Then, the block kernel I' = ker(Mong (g o h) — Mong(g)) contains
Cg. Moreover:

(1) If h is linearly related over k to XP, then T = Cj.
(2) If h is linearly related over k to T,, then either I' = D} or
= {(a1,...,aq) € DL a1---aq € Cp}.

The proof of the above theorem is given in Section 4.

3. REDUCING THE SOLVABLE CASE OF THEOREM 1.1 TO LENGTH 2 COMPOSITIONS

Let k£ be a field of characteristic 0. In this section, we focus on the solvable case of
Theorem 1.1, while the nonsolvable case will be discussed in Section 5.

Theorem 3.1. Let k be a field of characteristic 0. Let f € k[X]\ k be a polynomial with
solvable monodromy group such that deg(f) is coprime to 6, and let g € k(Y')\ k be a Siegel
function of degree at least 2. Then f(X) = g(Y) is reducible if and only if f and g have

a nontrivial common left composition factor, that is, f = ho fi and g = ho g1 for some
h, f1 € k[X] and g1 € k(X) such that deg(h) > 1.
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3.1. Diagonality of the kernel. Recall that a subgroup D of a power B", r > 1, is a
diagonal subgroup if each of its r projections to B is injective. We start with the following
key theorem showing that the block kernel is diagonal for minimally reducible pairs:

Theorem 3.2. Suppose that an odd degree polynomial f € k[X] and a Siegel function
g € k(X) form a minimally reducible pair, and that f = ho f, for indecomposable f, € k[X]
of degree p, with solvable monodromy Mong(f,). Then the kernel K := ker(Mong(f) —
Mony(h)) is a diagonal subgroup of Mony(f,)%e") with | soc(K)| = p,.

We shall need the following lemma:

Lemma 3.3. Suppose that f € k[X]| and g = y1/v2 € K(X) form a minimally reducible
pair for coprime y1,v2 € k[X]. Write f = ho f. and g = g1 o g2 for indecomposable f,
and deg(g2) > 1, and assume Mong/(f,) is solvable with p, := deg(f,) # 4. Then the fiber
product P 4, hIP’l — P! of g and h factors through f, so that p, | deg(gz).

Equivalently, letting z,y be the roots of f(X) —t and v1(X) — ty2(X) € k(t)[X], resp.,
andu = fr(x), there exists a k(t)-conjugate xo of x such that k(xo) C k(u,y). Furthermore,
xo can be chosen as a k(u)-conjugate of x.

Proof. Let v = ga(y). Recall that since f and ¢ is a minimally reducible pair, k(z) and
k(v) (resp., k(y) and k(u)) are linearly disjoint over k(t). Let Qo/k(u,v) (resp., Q/k(u,v))
be the Galois closure of k(v,x)/k(u,v) (resp., k(u,y)/k(u,v)). Since k(u,v) and k(x) are
linearly disjoint over k(u), we may identify Gal(Qy/k(u,v)) with a subgroup of Mong(f).
Since f, is indecomposable of degree # 4 with solvable monodromy, as in Section 2, these
subgroups identify with subgroups of AGL1(p;), where p, = deg(f,) is prime. Since p, is
prime and k(v, z)/k(u, v) and k(u, y)/k(u,v) are not linearly disjoint, we have k(v,z) C Q
and hence €y C €. Since the image of Gal(Q/k(u,y)) in Gal(Qo/k(u,v)) < AGL(p,) is
intransitive, Remark 2.1 gives a root g of f,.(X)—wu fixed by this image. This root is a k(u)-
conjugate of = that is contained in k(u,y), yielding the desired inclusion k(v, z¢) C k(u,y).
As k(u,y) is the compositum of the linearly disjoint extensions k(y)/k(t) and k(u)/k(t), it
is the function field of the fiber product of g and h, so that the inclusion k(zg) C k(u,y)
implies that this fiber product factors through f. Moreover, since xg € k(u,y), the degree

pr = [k(z0,v) : k(u,v)] divides [k(u,y) : k(u,v)] = [k(y) : k(v)] = deg(ga2)-

Q—Q
k(z) k(v,z)
pr | fr Dr
k(u) k(u,v) k(u,y)
h
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In the setup of Theorem 3.2, we get:

Corollary 3.4. Let 2 be the common Galois closure (obtained by Lemma 2.6) of f(X) —
and G(X) :=y(X) — ty(X) € k(t)[X], where g = 1 /2 for coprime y1,7v2 € k[ X]. Then
QoK) () = Q for a root y of G(X).

Note that group theoretically, the equality Q25°°(%)(3) = Q means that V := Gal(2/k(y))
and soc(K) generate a subgroup isomorphic to a semidirect product soc(K) x V.

Proof. As noted in Section 2, since f, are indecomposable of degree p, # 4 and solvable
monodromy group, p, is prime and I', = Mong/( f,) embeds into AGL; (p,). Letting G,_1 :=
Mony(h), we may identify Mong(f) as a subgroup of AGL;(p,) ! Gr—1. Moreover, letting
Q,_1 be the splitting field of h(X) —¢t, we see that K = Gal(Q2/,_1), and that p, | | K| by

Lemma 2.2. Since the projections of K < Fdeg( ) to each of the coordinates are isomorphic
[KN24, Remark 3.2], this implies they all contain Cj, . Since soc(I';) = soc(AGL1(py)) =

Cp,, by Lemma 2.9, it follows that soc(K) Kn C’deg(h) Set ) = QSOC( ),
Let x be a root of f(X) —t € k(t) andsetu—fr ) and k(v) = Q' Nk(y

soc(K)

|4 K

AN \ b

g\/

k(t)

On the one hand, note that for any k(t)-conjugate @ of v and roots T, 2’ of f.(X)—u, we
have ' (z) = Q/(2'): Indeed, since ' /k(t) is Galois (as soc(K) < K is characteristic) and
QO £ Q, we have k(T) ¢ ', and hence ' /k(u) and k(Z)/k(u) are linearly disjoint. This
implies that f,(X) —w is irreducible over . As soc(K) is abelian, Q' (Z)/Q' is Galois, and
hence V'(z) = Q/(2/).

On the other hand, since k(y)/k(t) and k(u)/k(t) are linearly disjoint, h(X) — ¢ remains
irreducible over k(y), and hence V := Gal(2/k(y)) acts transitively on the k(t)-conjugates
of u. To apply Lemma 3.3, note that k(y)/k(v) is nontrivial since Q is the Galois closure
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of k(y)/k(t) and since ' # Q (as p, | soc(K)). Thus the lemma implies that some k(u)-
conjugate x¢ of z is contained in k(y,u). Thus k(v,z§) C k(u?,y) C Q'(y), for every
o €V = Gal(Q/k(y)). Combining this with the transitivity of V' = Gal(Q2/k(y)), we see
that ©'(y) contains all k(t)-conjugates of z, that is, Q' (y) = Q. O

To conclude Theorem 3.2, we need the following proposition and lemma:

Proposition 3.5. Let p be a prime and let h = uwowv : P! — P! be a composition of two
degree-p maps with solvable monodromy. Suppose that there exists a Galois map g : X P!
whose fiber product Pl#hyg)? with h is irreducible, and that the pullback hg of h along g
has abelian monodromy group. Then the kernel K of the projection Mong(h) — Mong(u)
has a socle of cardinality at most p?.

Lemma 3.6. Let L/K and M /K be linearly disjoint extensions such that ML/L and L/ K
are Galois. Then ML/K is Galois.

Proof. First note that, by linear disjointness, any o € Gal(L/K) extends too € Aut(ML/M) <
Aut(ML/K). Now we are going to prove that (ML)AWML/K) — K that is ML/K
is Galois. For that, let a € (ML)AMML/K) — Since ML/L is Galois, we have a €
(ML)GAML/L) — [, Moreover, for any o € Gal(L/K), we have o(a) = &(a) = a. As
L/K is Galois, we obtain a € LG(L/K) — K Consequently (M L)AWML/K) — g O

Proof of Proposition 3.5. Let a be such that h(a) = ¢, that is, a root of hy(X) — the(X) €

k(t)[X], where h = hy/hg for coprime h1, hg € k[X]. Set b := v(a) and denote by k(a)/k(t)
(resp., %/k(t)) the Galois closure of k(a)/k(t) (resp., k(b)/k(t)) and by k(X) the function
field of )A(j By assumption, k(a)/k(t) and k(X)/k(t) are linearly disjoint. Since k(a) -
k(X)/k(X) is the function field extension corresponding to hg, and since Mony(hg) is
abelian, the extension is Galois and its group W = Gal(k(a)k(X)/k(X)) ~ Mony,(hy) is
abelian. Moreover, k:(ci)\lj(f( )/k(t) is Galois by Lemma 3.6. Since it is Galois and contains

k(a), it also contains k(a) so that k(a)k(X) = k(a)k(X).

k(a) ———————— k(a)k(X)

/‘ H

k(a)

/ v k(b) — k(b)k(X)

hl e S~ | w

(
\k(b) k(b)k(f(y
u| |
(

k(t) J k(X)

Since u, v have degree p and solvable monodromy groups, as in Section 2, we identify both

Mony(u) and Mong(v) as permutation subgroups of AGL;(p), so that Gal(k(a)/k(t)) <
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AGL1 (p)tAGLy(p). Since [k(b)k(X) : k(X)] = p, the projection of the p-clementary abelian
group W < AGL;(p) ! AGL;(p) to AGL1(p) contains C,. Since H = W N AGL;(p)? < Ch
is the kernel of this projection and since p? = [k(a)k(X) : k(X)] = |W|, we get |H| = p.
Since W <Gal(k(a)k(X)/k(t)), the subgroup soc(K) also normalizes W in Mony(h). Hence,
|soc(K)| | p? by Proposition 2.8.9 O

Lemma 3.7. Let f,g € k(X) \ k be a minimally reducible pair such that f = f1 o fo for
f2 € k(X) whose degree n is an odd composite number. Then fa is not linearly related to
T, or to X™ over k.

Proof. Suppose on the contrary that fo is linearly related over k to 7}, or X", so that
Mony(f1) < AGLj(n). Suppose that x,y are such that f(z) =t and g(y) = ¢, that is, x,y
ate 100ts of py(X) — tpa(X), a1(X) — tg3(X) € h(t)[X] resp., where f = p1/p2, g = /a2
for coprime p1,pa € k[X] and q1,q2 € k[X], resp. Let u = fo(z), and €' the Galois closure
of k(z)/k(u). Since k(y,u)/k(u) and k(z)/k(u) are not linearly disjoint, L = k(y,u) N Q'
is not linearly disjoint from k(z) over k(u). 1°

Since n is composite, Remark 2.1 and the Galois correspondence imply there exists an
intermediate field k(u) € Lo € k(z) such that L/k(u) and hence k(y,u)/k(u) are not
linearly disjoint from Lo/k(u), contradicting the minimal reducibility of f and g. O

Proof of Theorem 3.2. Retain the notation from the proof of Corollary 3.4. By definition
of k(v), we have [k(y) : k(v)] = |soc(K)| = pt for some £ > 1. By assumption p, is odd.
Assume on the contrary that £ > 2. Write v = v(y) for v € k[y] (resp., v € k(y) Siegel) and
consider a decomposition v = v1 0 - -+ 0 v, for indecomposable v; € k[X] (resp., functions
v; € k(X) linearly related over k to Siegel functions), i = 1,...,m. We claim that m = ¢
and each v; (1 <4 < r) is linearly related over k to XPr or Tp,. If g is polynomial, this
follows from Ritt’s first decomposition theorem. If g is a Siegel function, then v is linearly
related to over k to a polynomial; indeed, letting g = h o v for some h € k(X) \ k and
A € g~ !(c0), note that, since [v~1(\)| < 2, deg(v) is odd, and the ramification at oo for g
is odd, it follows that [v='()\)| = 1. Therefore, for every 1 < i < m, we have deg(v;) = p,
and v; is linearly related over k to XPr or Ty, som = (.

By Lemma 2.10, v,,,_1 o v, is linearly related over k to U o 6 o V, where 6 is a linear
polynomial and U,V € {XPr T, }. Let K’ = ker(Mong(U o 6§ o V) — Mony(U)). By
Proposition 3.5, |soc(K’)| < p2. Hence, by Theorem 2.11, U o § o V is linearly related
over k to Tpg or XP". Therefore Um—1 O Uy is linearly related to XPr or Tpg over k, which
contradicts Lemma 3.7. Thus ¢ = 1, and soc(K) is diagonal. O

3.2. Relating the kernel to the two-step kernel. Theorem 3.2 is a contrast to Theorem
2.11 for compositions of two polynomials. The following relates the two relevant kernels:

INote that W = (H, o) for some o such that H° = H, and that the projection of o generates Cp.
0mdeed, if N/K and M/K are non-linearly disjoint finite separable extensions, then neither are N/K
and NN M/K, where N/K denotes the Galois closure of N/K.
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Proposition 3.8. Suppose f = ho f,_1 o f, for indecomposable f,._1, f, € k[X]| of prime
degrees pr—1 and py, resp., and solvable monodromy. Let G = Mong(f), let K = ker(g —

Mong(fio-+-0 fr—1)), let G = Mong(fr—1 0 f,) and let G,, = GNCh~'. Then [G,,
soc(K)] | p2, where soc(K) denotes the image of soc(K) in G.

Proof. Let X be the set of roots of f(X) — ¢ in its splitting field Q. Fix z € X, and let
y:= fr(z)and z := f,_1(y). Then G = Gal(Q2/k(t)) also acts on the sets ), Z of conjugates
of y and z, resp. The kernels K, N of these actions on ) and Z, resp., are normal subgroups
of G which act on the block X, = (f-_10 f;)"!(z). Thus, the images K, N of these actions
are normal subgroups of G < AGLj(p,) {AGL1(p,—1). Since soc(K) = KN C’gfg(flomofpl)
(by Lemma 2.9), the image soc(K) of its action on X is contained in N, := NN Cp .
We first claim that [G, : Np,] | pr. Since f,_1 is a polynomial, oo is totally ramified
in k(y)/k(z), but is completely split in the extension of k(z) fixed by N as in Lemma 2.2.
Hence this fixed field and k(y) are linearly disjoint over k(z), so that N acts transitively
on the block f ! (2). Thus the image of N in Mong(f,_1) contains an element o’ of order

pr—1. Let 0 € N be a lift of this element of order'! a power of p,—1 and 7 its image in
N. Observe next that G, < N -1 ({Np,,7)): indeed for a € G),, since N <G, we have
pr

aca™! € N,soasa 'o~' € NNCp/~" = N, and aga! € (N,,,7). Hence, by Proposition
2.8, we get

[Gp, : Np,] | ngg—l(wpr@) : Np,| | pr, as claimed.

Finally, we claim that (&, N,,)/soc(K) is abelian, so that [Ny, : soc(K)] | p, by Propo-
sition 2.8, and in total we have [Gp, : soc(K)] | p? as needed. Since Mong(fr—1) <
AGL;(p,_1), the action of N/K on Y factors through AGL1(p,_1)?. Consider the projec-
tion 7 : N/K — N/K (where the latter acts on f. % (z) not necessarily faithfully), and
the preimage of N, K/K = N,, /soc(K)'? under w. Let W < N/K denote a p,-Sylow
subgroup of this preimage, so that 7(W) = N, /soc(K).

Assume first that p, # p,_1. Since Cp, _, is normal in AGL;(p,—1), the commutator
[o,w] € N/K < AGL1(p,_1)? is an element of order dividing p,_; for every w € W, and
hence 7([(c), W]) = [(7), Np,] is a trivial subgroup of N, /soc(K), so that (&, N,,.)/soc(K)
is abelian, as claimed. Henceforth assume that p,—1 = p, = p. In this case (o, W) is
contained in the p-Sylow subgroup of AGL;(p)? and hence is abelian. Thus 7({o, W)) =
(@, Np)/soc(K) is abelian as well, proving the claim.

7

0

3.3. Proof of Theorem 3.1. In the rest of the section, we prove Theorem 3.1 assuming
Theorem 2.11 whose proof will be provided in Section 4.

Proof of Theorem 3.1. Let f € k[X] and g € k(X) be a Siegel function as in Theorem 3.1.
We may assume that the pair f, g is minimally reducible.

Hgyuch a lift can be of order Pr_1 O p2_1.

12Note that since K/ soc(K) is of order coprime to p,, clearly K NN, = K N CL ' = soc(K).
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Now write f = fio0---o f, for indecomposable polynomials f; € k[X] with p; = deg(f;) >
5 a prime. Pick roots z and y of f(X)—t =0 and g(Y) — ¢t = 0, respectively. By Lemma
2.6, the extensions k(z)/k(t) and k(y)/k(t) have a common Galois closure €.

Assume on the contrary that » > 2. Letting K = ker(Mong(f) — Mong(fio---0 fr—1)),
we claim that p3 | |soc(K)|. Since by assumption p, # 2, Lemma 3.7 implies f._1 o f, is
not linearly related to XPrPr=1 or T}, , | over k. Theorem 2.11 implies that the geometric
monodromy group Mong(f,—1 o fr) < AGL1(pr) ! AGL1(p,—1) contains Cj/ ' and hence so
does G = Mong(f,—10 fr) < AGL1(p;) ! AGL1(p,—1). Therefore, by Proposition 3.8, we get
P72 | soc(K)|, and so p? | | soc(K)| since p, > 5, proving the claim. This contradicts
Theorem 3.2 which gives |soc(K)| = p;.

Thus we get » = 1. In such case Mong(f) < AGL;(p1) and hence k(y) contains a root
of f(X) —t by Remark 2.1, so that g factors through f as needed. O

4. PROOF OF THEOREM 2.11

In this section, our aim is to prove Theorem 2.11. In §4.1, we begin by establishing
some necessary elementary results in linear algebra. In §4.2, we proceed with the proof of
Theorem 2.11.

4.1. Linear algebra lemmas. Let p,q > 2 be prime numbers. Consider an F,-vector
space

W=F, up® - SFp-us—1
of dimension q.
Lemma 4.1. Let A = {a; | i € F,} be a set of size q. Let ig € Fy and let ) # S C Fy be
such that, in the multiset

K = {as)as-ﬁ—io ’ s € S},

each element appears ezactly twice. Then S =TF,.

Proof. Observe that, for any s € S, since as4i, appears exactly twice in K, we have
s+ig € S. Fix sg € S. By the observation above, sg, sg+ 0, So + 20, ..., S0+ (g—1)ip € S.

Since F, = {s¢, so +i0,...,50 + (¢ — 1)ig}, we get S =F,. O
Lemma 4.2. Assume p,q > 3. Letig € F; and let ) # S C F,. Then

Z As (us + ustiy) # 0,

ses

for all (A\s)ses C Fy.

Proof. Assume on the contrary that

(4.1) D X (s + tayig) =0,

ses
for some (\s)ses C Fp. Consider the multiset K = {us,us+i, | s € S}. From (4.1) and
the fact that {uo,...,uq—1} is an F,-basis of W, each element in K appears exactly twice.

By Lemma 4.1, we get S = F,. Using again (4.1), we deduce that A\, = —\;_;,, for all
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ke S =TF,; Hence \og = (—1)7Xg—q.ip = (—1)9Ag = —Ag, s0 2X¢g = 0. Since p is odd, we
get \g = 0, a contradiction. O

Lemma 4.3. Let ig € Fy and let ) # S C ¥y be such that
(4.2) Z As (Us + (p - 1)Us+i0) =0,
seS
for some (As)ses C Fy. Then S =T,.
Proof. Consider the multiset K = {us,ust+i, | s € S}. From (4.2) and the fact that

uQ, - .., Ug—1} is an F,-basis of W, each element in K appears exactly twice. By Lemma
q p
4.1, we obtain S = F,. g

Lemma 4.4. Assume p =2 and q¢ > 3. Let ig, jo € Fy be such that jo # 0 and iy # jo.
Let ) # S C F, be such that

(4.3) Z As (Us + Ustiy + Us+jo T Us-i-io—jo) =0,
ses

for some (As)ses = 1. Then S =TF,.

Proof. For any k € Fy, let wy, = up + Ug44io—j,- Then we can rewrite (4.3) as

(4.4) D s (ws + weyjy) = 0.
ses
Note that
(4.5) wo + -+ wg—1 = 0.
Moreover, by Lemma 4.3, any g—1 vectors from {wy, ..., ws—1} are Fo-linearly independent.

Assume on the contrary that there exists sg € S such that ws, or wg,4j, appears exactly
once in (4.4). Without loss of generality we may suppose that ws, does. Then we get

(4.6) Wsy = Z (ws + ws-i—jo) + Wsg+jo-
s€S\{so}
Note that, in the RHS of (4.6), each vector appears at most twice, and that the writing
Wsy = Z W;
i€Fq\{s0}

is unique in ®jep,\ (5} F2 - w;. Hence, we conclude that, in (4.6), each vector appears
exactly once (since [, = IF3). This implies that 2(|S| — 1) + 1 =¢ — 1, and so ¢ is even, a
contradiction. Consequently, each vector in (4.4) appears exactly twice. Applying Lemma

4.1 to the multiset K = {ws, wstj, | s € S}, we obtain that S =T,. O
Lemma 4.5. Assume p =2 and ¢ > 3. Let v be a vector independent with o, ..., ug—1
over Fa. Let ig € Fy. Then ug + uj, +v,...,ug—1 + Ug—1+i, + v are linearly independent

over Fo.
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Proof. Assume on the contrary there exists ) # .S C F, and (As)ses = 1 such that

Z As(Us + Ustiy +v) =0.
seS

Then
Z As(Us + Ustiy) =0
seS
and |S|v = 0. By Lemma 4.3, we have S = F,. Since ¢ is odd, we get v = 0 a contradiction.
Consequently ug + i, + v, ..., Ug—1 + Ug—144, + v are linearly independent over Fo. [

4.2. Proof of Theorem 2.11. Let k be an algebraically closed field of characteristic 0.
Suppose h € k[X] \ k (resp., g € k[X] \ k) is linearly related to X? or T, (resp., Ty orX9)
for primes p,q > 2. Denote by I' = ker(Mong(g o h) — Mong(g)) the block kernel. To
prove Theorem 2.11, without loss of generality, we may assume that g € {X?,T,} and that
he{loXP oT,} for some { =aX + b € k[X]\ k with a € k* and b € k.

Fix a compatible system of primitive roots of unity (¢m)m>1 C k. For any group H and
n > 1, denote by diag(H"™) the diagonal subgroup of H".

4.2.1. Assume g = X7 and h = ¢ o XP. Without loss of generality, we may assume a = 1.

Proposition 4.6. We have:

o diag(C{) ifb=0,
BRKe otherwise.

Proof. Let K = k(y) where y = t'/9. Then the splitting field of f(X) — t over k(t) is
L = k(t) (wjl-/p | j GFq), where w; = Cfly —b(j € Fy). Viewing ¢ = K*/(K*)P as
an Fp-vector space and letting O = (wo, ..., wy—1)r, < %, by Kummer theory, we have
Assume first that b = 0. Then wo = - -+ = wy—1 = y in ¢, which implies O = (y)r,, and
so dimp, (I') = dimp,(O) = 1. In addition, we have I = diag(Cy).
Assume next that b # 0. Since wy,...,wq—1 are Fp-linearly independent in ¢, we have
dimp,, (I') = dimp, (O) = ¢, and so ' = Cj.

/L\
k(wé/p> ..

o
k

. k (wéépl)
G,
(y) =K
=
k(t)
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4.2.2. Assume g =T, and h = £ o XP. Since the case g = T is covered by §4.2.1, we can
assume that ¢ > 3. Furthermore, without loss of generality, we may also suppose a = 1.

Proposition 4.7. We have

!

_ Jdiag(C]) ifp=2and b= %2,
K otherwise.

Proof. Let K = k(y) where y € k(t) satisfies t = y9 + yiq Then the splitting field of
T,(X) —t over k(t) is k(y), and its roots are z; = (}y+ ng (¢ € Fy). Moreover, the splitting
field of X? — ¢71(z;) (i € F,) over k(z) is F; = k ((zl - b)l/p>. Hence, letting E; = F;(y)
(1 € Fy), the splitting field of f(X) —t over k(t) is L = Ey---E;_;. Below, we view
¢ = K*/(K*)P as an [F,-vector space.

\

:FO = Fy- 1(?4)

k(y) = K

@\gj

k(zq-1)

/
\\\\ ////
k(t) =k (v + &)

For i € Iy, letting

L (b+VEE—1 (b= VT 1 -
up =y — (4 B T— Vi =Y — (g — and w; = wvy? 7,
we have z; —b = w; in C, and so E; = K(wil/p) Consider S; = {u; | ¢ € Fy} and
Sy ={v; | i € F;}. We distinguish three cases:

Case 1: Suppose S NSy = (. Then uo,...,uq_l,vo,...,vq_l,yp*]L are [Fp-linearly
independent in ¢, and so are wy, ..., w,—1. Hence, we get ' = C}..

Case 2: Suppose p > > 3 and S NSy # (. Assume first b = +2. Then w; = uy?~! for all
it € F,. Since ug, ce q L, yP~ L are [F)-linearly independent in &, so are wy, . . . , wg—1, which
implies I' = Cf. Assume now b # +2. Then, there exists ig € IF3, such that v; = w1, for
all i € F,. By Lemma 4.2, ugvo, ..., us—104-1,y? "1 are Fp-linearly independent in ¢, so

are wy, . .., wy—1. Consequently we get I' = C{.
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Case 3: Suppose p =2 and S NSy # (). Assume first b = +2. Then w; = y in C for
all i € Fy, so I' = diag(C9). 13" Assume now b # +2. Then, there exists ig € [y, such that
Vi = Ujtiy, for all ¢ € Fy. By Lemma 4.5, ugvoy, - . . , ug—1v4—1y are Fo-linearly independent
in €, so are wy, . ..,ws—1. Consequently we get I' = C. O

4.2.3. Assume g = X? and h = £ oT,. Since the case h = £ o T} is covered by §4.2.1, we
may suppose p > 3. For n > 2 and H < AGL(p), let
Lan ={(ar)i=1 € H" [a1---an € Gy},
Without loss of generality, we may assume that a = 1.
Proposition 4.8. We have
diag(D{) ifq=2 and b =0,
'=<¢Lp,q ifb= 1+C§9 Jor some i € Fy,

['=D}  otherwise.

Denoting by Dy X¢, D, the fiber product along the canonical epimorphisms D} —
D;L/ﬁme = (Cy and D, - D, /C, = C>, we shall use:

Lemma 4.9. Lp, n1 = Dy X¢, Dp.

Proof. This follows from Lp, ni1 = ((Dy \ LD, n) X (Dyp\ Cp)) U (LD, n x Cp). O

Proof of Proposition 4.8. Let K = k(y) where y = t'/9. For j € Fy, letting u; = y+ (=b+
2)C(;j, vj=y+(-b— 2)C(;j and wj = u;vj, the field F; = K(,/wy) is the unique quadratic
subextension of the splitting field E; of T}, — K_I(ng) over K. Moreover the splitting field
of f(X)—tover k(t)is L=Ey... E,—1. We view ¢ = K*/(K*)? as an Fa-vector space.
Consider 8y = {(=b+2)¢;” | j € Fy} and Sy = {(=b—2)¢;7 | j € F,}. Unless ¢ = 2 and
b =0, in which case I' = diag(Dg), the extensions Ey/K, ..., E,_1/K are pairwise distinct.
We may assume now that (q,b) # (2,0) We distinguish two cases:

-Case 1: Suppose that S; NSy = 0. Then ug, ..., uq—1,,...,v4—1 are Fy-linearly inde-
pendent in ¢, and so are wy, ..., wg—1. This implies that Fy/K, ..., F;—1/K are linearly
disjoint. Hence Ey/K,...,E;1/K are also linearly disjoint. Consequently, we obtain
I'=Dj}.

-Case 2: Suppose that S; NSy # (0. Note that —b — 2 # —b+ 2, so uj # v; in €, for
all j € Fy. Then, there exists i9 € F} such that (—b — 2¢7 = (=b+ 2)(;0“0), that is,
b=2(1 —i—C;O)(l —C;O)_l. Hence v; = uji4, for all j € F,. Since ug, ..., uq—1 are Fo-linearly
independent in %, by Lemma 4.3, wy, ..., wq—2 are also Fo-linearly independent. This
implies that Fy/K, ..., F,_o/K are linearly disjoint, and so are Ey/K, ..., E, /K. Since

13Here, we have Mony (g o h) = Dag,. Indeed, since X? — 2 = T5(X), we have go h = Th, when b = —2,
and go h = —Te(v/—1z) when b = 2.
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Ey/K,...,E;_1/K are pairwise distinct and wg - - - wg—1 = 1 in ¢, combining Lemma 2.7
with Lemma 4.9, we deduce that I' = £, ;.

L

0 Cp PN Cp q—1
\\ -
FO Fq—l

4.2.4. Assume g = Ty and h = £ oT,. Since the cases g = Ty or h = £ o T are covered by
the previous parts, we may suppose p,q > 3. Recall that £ = ax+ b with a € k* and b € k.

Proposition 4.10. We have

L [ae(cy) if (a,6) = (+1,0),
B Lp,q orT' =D} otherwise.

Proof. Assume first that (a,b) = (£1,0). In this case, f is linearly related to Tpq, so
I = diag(Cy). o
Assume now that (a,b) # (£1,0). Let K = k(y) where y € k(t) satisfies t = y9 4 yiq
Then the splitting field of T,(X) — ¢ = 0 over k(t) is k(y), and its roots are z; = Ly + ﬁ
q
(i € F,). For all i € F,, let F; be the splitting field of T,,(X) — ¢£=1(z;) over k(z;). Note
that, for all 7 € F,, the extensions k(y)/k(z;) and L;/k(z;) are linearly disjoint, where

L; = k(z) <\/(zZ —b+2a)(z —b— 2a))

is the unique quadratic subextension of F;/k(z;); as a consequence, E; = Fj(y)/k(y) is
dihedral, and so has a unique quadratic subextension L;/k(y). Moreover, the splitting
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field of f(X) —t over k(t)is L =Ey--- E4_1.

\Cz ¢, Lat
Cyp / k(y) = K
\ \\
Cz /

Zo) . k(zq 1
~ ()/

For i € Iy, let

C‘Z<b 2a+/( b+2a ) y_C_i<b—2a— (—b+2a)2—4>
q 2 ’

By letting

wi = ('Y + (=b+20)Cy + 1) (C'y* + (= — 2a)Cy + 1) (i € Fy),
we have
(4.7) Li = k(y) (/).

With A = —b — 2a and B = —b + 2a, we have
wi = (¢'y* + By +1) (' + Aly +1)

for all i € F,. We view € = K*/(K*)? as an Fa-vector space. Clearly, for every i € Fy,
we have w; = u;v;2;t; in €. Consider

Si={u; |i€Fy},So={vi|i €Fy},S3={z|i € Fy} and Sy = {t; | i € Fy}.
We distinguish four cases:

Case 1: There exists k € {1,2,3,4} such that Sy ¢ {S; | i # k}. In this case, since
the vectors in S, are Fa-linearly independent in €, so are wy, ..., w,—1. Hence we obtain
I'=Dj.

Case 2: §§ =& and S5 = 55 but §; # S3. Note that ug # vy or zg # tg, for otherwise
wo = 1 in C, a contradiction. Without loss of generality, we may assume zy # t3. Then
there exists ig € Fy such that ¢; = 2j14, for all j € F;. On the one hand, (u;v; | i €
Fo)r, N (ziti | i € Fg)r, = 1. On the other hand, by Lemma 4.3, zolo, ..., 242t 2 are
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[Fo-linearly independent in &. Therefore wy,...,wq—2 are also Fo-linearly independent in
%. Since wo - wg—1 = 1in ¢, we have I' = Lp, 4.

Case 3: &1 = S3 and S; = 84 but §1 # So. Note that ug # 2o or vg # to. With-
out loss of generality, we may assume ug # zo. Then there exists iop € Fj such that
2j = Ujyi, for all j € Fy. In this case, (uz; | i € Fg)p, N (vit; | i € Fg)r, = 1. By
Lemma 4.3, upzo, . . . , uq—22¢—2 are Fa-linearly independent in ¢, so are wy, . .., wy—2. Since
wo - wg—1 =11in ¢, we have I' = Lp_ 4.

Case 4: §; =S4 and Sy = S3 but S # So. By the same reasoning as in Case 3, we also
have I' = Lp,, 4.

Case 5: §; = S = &3 = S4. In this case, there exist ig, jo € Fy such that vy = upy,,
2 = Uk4j, and t, = Uk:+z‘o—j014 for all k£ € F,. But we have iy # jo and jo # 0, for

otherwise wg = u%u?o = 1 in ¥, a contradiction. By Lemma 4.4, wy,...,ws—2 are Fo-
linearly independent. Since wp - --wy—1 = 11in €, we obtain I' = Lp_ 4. U

5. PROOFS OF MAIN RESULTS

5.1. Proof of Theorem 1.1. Let f and g be as in Theorem 1.1. By Theorem 3.1, we may
assume that Mong(f) is nonsolvable. Write f = fio---o f, (r>1)and g =gy 0--- 0 gs
(s > 1) for indecomposable polynomials f;,g; € k[X], i = 1,...,7, j = 1,...,s. Let
k(xz;), i = 0,...,7 be the corresponding tower of fields such that x, = x, xop = t and
fi(x;) = ;-1 for all 1 < i < r. Similarly, define k(y;), ¢ =0,...,s, so that ys =y, yo = ¢
and g;(y;) =yi—1 forall 1 <i<s. Fori=1,...,r,let R = fio---0 f;.

By Fried’s argument, we can also assume that (f, ¢) is minimally reducible. Let h € k[X]
be a minimal nonsolvable left factor of g. Without loss of generality, we can suppose that
h=gi0---0g, for some 1 < u < s. Note that g1,...,g,_1 are solvable polynomial maps
while g, is nonsolvable. By minimal irreducibility, k(x) and Fy := k(y,—1) are linearly

MThe expression for tx = Ur4i,—j, follows from vy = Uk4iy, 2k = Uk+j,, and the fact that the constant
terms of both ugvr and zxtk, as a polynomial in y, are equal to Cq_%.
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disjoint over k(t).

|
Fo(x\
k(y) k(z)
N
Fy !
N
k(1)

Hence, since € is the Galois closure of k(z)/k(t), by [KN24, Lemma 2.12], it is also the
Galois closure of Fy(x)/Fp. In particular, I', = Mong(gy,) is quotient of U, := Gal(Q2/Fp).
As g, is nonsolvable, I';, is a nonabelian almost simple group.

Fori=1,...,r, let ©;/k(t) be the Galois closure of k(z;)/k(t) and let U; = Gal(Q; Fy/ Fp).
Let m > 1 be minimal such that I';, is a quotient of U;. Since I', has a unique minimal
normal subgroup and it is nonabelian, Mong(f,,) has to be nonsolvable. Indeed, other-
wise Q, Fo/Qm—1F is a solvable extension and the kernel K], of the natural projection
Up — Up—1 has to be in the kernel of the projection « : U,, — I'y, contradicting the
minimality of m.

This moreover shows that in every decomposition R, = hio---oh,, for indecomposables
hi, the group Mong(h,,) is nonsolvable. By the Ritt theorems [ZMO08], this implies f,, is
right unique, that is, for every decomposition f = uowv with deg(v) > 2, one has v = v’ o f,,
for some v' € k[X]. Thus, letting K,, be the kernel of the projection G:= Mong(R,,) —
Mony(fio- -0 fm—1), by [KNR24, Proposition 3.3.], the socle soc(K,,) is a unique minimal
normal subgroup of G. In particular, its centralizer in G is trivial.

Since the Galois closure of Fy/k(t) is solvable, U, = Gal(2/Fy) contains soc(K,,) (which
is a power of a nonabelian simple group). As in addition K], = K,, N Uy, we deduce
soc(K,,) = soc(K],). Since the centralizer of soc(K,,) in G is trivial, it follows that so
is the centralizer of soc(K],) in Uy,. Since soc(K],) is minimal normal in U, by [KN24,
Cor. 3.4]15, and its centralizer is trivial, its a unique minimal normal subgroup of U,,. It
follows that soc(K],) is mapped isomorphically to a minimal normal subgroup of I';, and
hence is simple. Thus soc(kK,,) = soc(K/,) is simple and hence diagonal® in Mony(f,,)¢,
d = deg(fio---o fm_1). Hence, since soc(Mony(fn))¢ C soc(K,,) by [KNR24, Corollory
4.4.], we have d = 1, and so m = 1.

15When applying [KN24, Corollary 3.4], one has to choose U as the image of the action of a block
stabilizer in the action of U,,.
16¢hat is, the projection into each factor of Mony (fm)? is injective.
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It follows that U; is almost simple (so that U; = Mong(g,,)) and k(y,) is the fixed field
of some V < U; < G = Mong(f1). In particular, we see that QY is a common subfield of
Q4 and k(y,) and hence is of the form k(z) with h(z) =t,h'(y,) = z and g10---0g, = hoh’
for some polynomials h, h’ € k[X]. As the core of V in Uj is trivial so is its core in G, so
that Q; is the common Galois closure of f; and h.

By applying [M95], it follows that the stabilizers G; and V' of f; and h, resp., are either
conjugate or permutation equivalent, that is, G/G1 = G/V as G-sets. In the former case V
is clearly intransitive. In the latter case, every element of V' has a fixed point in its action
on G/G;. Thus, in this case as well V' is intransitive on G/G; by Burnside’s lemma. It
follows that in both cases f1(X)—h(Y) € k[X, Y] is reducible. By [KN24], either f; = hop
for a linear p € k[X] in which case both f and g factor through fi, or (f1,h) is among the
exceptional pairs classified by Fried.

5.2. Proof of Theorem 1.2. We assume f does not factor through an indecomposable
polynomial of degree < 6. By [KN24, Corollary 2.5], Red¢(Z) is the union of a finite set
and value sets g(Q) N Z of Siegel functions g such that the fiber product of g and f is
reducible. Here we classify all g satisfying these properties and G = Mong(g) = Mong(f)
is nonsolvable, showing they have to be left factors of f. Throughout, assume on the
contrary f € Q(z) and g € Q(z) is a minimal pair, consisting of a polyonmial and a Siegel
function, such that Red¢(Z) contains ¢(Q) N'Z but f and g do not have a common left
factor. The minimality here amounts to the following assertion: For every decomposition
f = hohy € Qz] with deg(hg) > 1, the set Redy(Z) \ U},— 0, w(Q) is finite. This implies
that (f,g) is a minimally reducible pair (but now with g a Siegel function), and hence f
and g have a common Galois closure by Lemma 2.6.

Assume g 0 ---0 g; € Q(y) for t < s is a minimal nonsolvable subcover!” of g. Thus
g1,-..,gi—1 are linearly related over Q to Siegel functions with solvable monodromy while
g+ has nonsolvable monodromy. In particular by our minimality assumption, Q(z) and
Fy := Q(y;—1) are linearly disjoint over Q(¢). Since these are linearly disjoint and {2 is the
Galois closure of Q(z)/Q(t), it is also the Galois closure of Fy(z)/Fy by [KN24, Lemma
2.12]. In particular, the monodromy group I'; of g; is quotient of U, := Gal(Q2/Fp) (the
Galois closure of Fy(x)/Fp). Recall that by [M95, Lemma 4.7(c)] the maps g; are also
indecomposable over C.

Suppose'® r is minimal for which T' := T is a quotient of U,. Since I' has a unique
minimal normal subgroup and it is nonabelian, Mong( f;) has to be nonabelian. Indeed,
otherwise Fy(z,)/Fo(zy—1) is a solvable extension and the kernel K| of the natural pro-
jection U, — U,_1 has to be in the kernel of the projection 7 : U, — I, contradicting
the minimality of r. This moreover shows that in every decomposition f = hyo---o0 h,,
Mong(h,) is nonsolvable. By the Ritt theorems [ZMO8] this implies f, is right unique,
that is, for every decomposition f = w o v with deg(v) > 1, one has v = v’ o f,. for some

170ne might need to replace the decomposition g = g1 o---0gs to get such a subcover. In this step, one
loses the reducibility of the curve f(z) = g(y).

1875 do so, one might need to replace f by a subcover of it. Then U, can still be identified with a
subgroup of G via restriction.
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v' € Q[z]. Thus, letting K, be the kernel of the projection G — Mong(f1 0 -- o fr—1), its
socle soc(K,) is a unique minimal normal subgroup of G by [KNR24, Proposition 3.3.]. In
particular, its centralizer in G is trivial.

Since soc(K,) is a power of a nonabelian simple group (since it is a nonabelian minimal
normal subgroup), its projection to the solvable group G/coreq(U,) is trivial, so that
soc(K,) C U,. Since its centralizer in G is trivial, so is its centralizer in U,, so that it is the
unique minimal normal subgroup of U,. It follows that soc(kK,) is mapped isomorphically
into I'.

By the monodromy classification of indecomposable Siegel functions [M13, Thm. 4.8],
either (A) T is almost simple, or (B) it is of product type A7 < T' < S,, 1Sz, m > 5,
or (C) it is in an explicit list of small degree affine groups. We claim that only case (A)
occurs. Since I' is nonsolvable and G contains only composition factors of polynomials of
degree > 6, in case (C) its nonabelian composition factor is one of A7, SLg(2), k = 4,5
by [M13]. Moreover by [M13, Theorem 5.2|, SL3(2) is the only composition factor of a
Siegel function over @Q among the list for (C). However, by the monodromy classification
of indecomposable polynomials over Q, SL3(2) does not appear as a composition factor of
Mong( f;) and hence is not a composition factor of G, so that (C) does not occur. In case
(B), since soc(K;) is mapped isomorphically to I, soc(K,) = A2. On the other hand by

[KN24, Proposition 2.1], soc(K,) = AP < ALdr’l], where m := deg(f10---0fr_1), [m] is the
corresponding set of blocks, and P is a partition of [m]. Since soc(K,) = Ai, P consists of
two blocks. The stabilizer Gp of the action of G on P contains the stabilizer of Q(z) but
on the other hand is of index 2 in G. This yields a subfield Q¢ C Q(z) of degree 2 over
Q(t), yielding a contradiction to the assumptions that f does not factor through a degree
2 polynomial.

Henceforth, we may assume case (A). Since the minimal normal subgroup soc(K,) is
mapped isomorphically into the almost simple group I', it is simple. Thus soc(K;) is
diagonal in Mong(f,)™. If m > 1, this contradicts [KNR24, Theorem 3.1] or [Ros22, Main
Thm.]. Thus m = 1 and hence r = 1. It follows that U, is almost simple and Q(y;) is
the fixed field of some subgroup V' < U,. In particular, letting €2; be the Galois closure
of Q(z1)/Q(t), we see that Q) is a common subfield of Q; and Q(y;) and hence is of the
form Q(z) with h(z) =t and gy o---0g; = ho k' for some h,h' € Q(z) where h is a Siegel
function over Q. As the core of V in U, is trivial so is its core in G, so that €y is the
common Galois closure of f; and h.

As in the proof of [KN24, Theorem 1.1], crossing the lists in [M95, M13] over Q yields
that either h factors through fi or Mong(f1) = S5 in the natural action. The latter case
contradicts our assumption that deg(f1) > 6. In the former case, the minimal reducibility
assumption implies f and h coincide with f; up to composition with linear fractionals, as
desired.

Finally, in the solvable case, we deduce Theorem 1.2 from:
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Proposition 5.1. Suppose f = fy0---o f, for indecomposable f; € Q[X], i=1,...,r of
degree > 7 with solvable Mong(f;). Then

Redf(Z) = Up(R(Q) NZ) U finite set,
where h € Q[X] runs through all left nontrivial factors of f.
Proof. By [KN24, Corollary 2.5],

Red(Z) = (U (R(Q)N Z)) U finite set,

h
where h € Q(Y) runs through all Siegel functions such that f(X) = h(Y) is reducible. By
Theorem 3.1, one can restrict those h to nontrivial left polynomial factors of f. O

5.3. Application to functional equations. Let k£ be an algebraically closed field of
characteristic 0.

Proof of Corollary 1.4. Let F(x,y) € klz,y| be an irreducible factor of f(z) — g(y) and
k(x,y) its corresponding genus-0 function field. Set ¢t = f(x) = g(y). Let k(s) = k(z)Nk(y).
Furthermore, by possibly replacing s, we may assume t = wi(s) for w; € k[z], and s =
fi(x) = g1(y) for f1,91 € k[z]. By our assumption of minimality for f, g, we get k(s) = k(t),
so that deg(w;) = 1. Since f1(X)—g1(Y) € k[X, Y] is reducible by assumption, §5.1 (which
gives Theorem 1.1 over arbitrary fields k of characteristic 0) implies that either (a) f; and
g1 have a common left factor h € k[z] of deg(h) > 1, or (b) that fi = wa o hy o u and
g1 = wy o hy o v, where deg(ws) = 1, and {hi, ha} is one of the pairs of polynomials of
degree 7,11,13,15,21, or 31 in [CNC99].

In the first case (a), we have fi = ho fo and g1 = ho g9, for h, fo, g2 € k[x] \ k, . Since
k(x) Nk(y) = k(s), it follows that k(x2) N k(y2) = k(s) for x2 = fa(z) and y2 = ¢2(y).
Since h(z2) = h(y2) = s, we obtain two distinct roots z2 and ya of h(X) — s € k(s)[X],
so that h(X) — h(Y) € k[x,y] has a nondiagonal irreducible factor of genus 0. It now
follows from [AZ03, Thm. 1] that there exist wq, hy € k[x] such that f = wy o hg, where
already ho(z2) = ha(y2). Moreover, either he = 2™ o uy, or T, o uy (with deg(u;) = 1)
for some n > 2, or h = we o P;owy, i = 1,2,3 (with deg(u1) = 1). Since we assumed
k(x2) N k(y2) = k(s), it follows that k(he(x2)) = k(ha(y2)) is of degree 1 over k(s), and
hence deg(wz) = 1. By setting u = wy o we, u = uj o fo, and v = uy o g, it follows that
(f,g) is in cases (2)-(4).

In the second case (b), setting o = u(x) and y2 = v(x), the function field k(x2,y2) is
of genus 0 as a subfield of k(x,y). A direct computer check, using Magma and the list of
ramification types in [M95], shows that the only pairs {hi, ho} in [CNC99] with a genus 0
factor are certain pairs of degree 7 or 13. By setting u = wj o we, we get that (f,g) is in
case (5). O

Remark 5.2. The computer check further reveals that in case (5), the degree-7 (degree-13)
polynomials h1, he have three branch points with branch cycles of orders 2,3,7 or 2,4,7
(resp. 2,3,13).
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